Spectral-luminescent properties of products of interaction of polyfluorinated containing a pyrazoline fragment pyrylium dyes with bovine serum albumin and amino acids
- Autores: Shelkovnikov V.V.1,2, Doroshenko D.D.1, Kargapolova I.Y.1, Kozlakov P.A.2, Shestakov N.A.2, Sotnikova Y.S.1
-
Afiliações:
- Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State Technical University
- Edição: Volume 51, Nº 1 (2025)
- Páginas: 51-64
- Seção: Articles
- URL: https://rjsvd.com/0132-3423/article/view/683096
- DOI: https://doi.org/10.31857/S0132342325010053
- EDN: https://elibrary.ru/LZSEUQ
- ID: 683096
Citar
Resumo
Studies of reaction ability fluorescent dyes for the production of labeled proteins and amino acids are important for the fields of bioengineering and biomedicine, in particular for obtaining bioimages for the purpose of cell visualization, studying the structure of labeled proteins by biophysical methods. Pyrylium dyes are able to interact with amino groups of proteins to form luminescent products, which allows them to be used in the field of proteomics. It is interesting to study the conjugation pyrylium dyes, containing both polyfluorinated fragment responsible to increased lipophilicity at proteins conjugation and pyrazoline fragment demonstrating anticancer activity. Pyrylium dyes containing a pyrazoline fragment and dialkylamino substituents (piperidino-, dibutylamino-, 4-hydroxypiperidino-) in a polyfluorinated aromatic ring in the donor part were synthesized by Knoevenagel condensation reaction. The reaction of pyrylium dyes with compounds containing a primary amino group was carried out to obtain a pyridinium dyes by the ANRORC mechanism (Addition of Nucleophiles, Ring Opening and Ring Closure). The ability of pyrуlium dyes to react with bovine serum albumin (BSA) and amino acids such as Lys, Arg, Cys, Phe to form pyridinium luminophore was shown. The spectral-luminescent properties of the resulting luminophores were investigated. The product of the reaction of pyrуlium dye (Е)-2,6-dimethyl-4-(4-{3-phenyl-5-[2,3,5,6-tetrafluorо-4-(piperidine-1-yl)phenyl]-4,5-dihydro-1Н-pуrazole-1-yl}-styryl)pyrylium tetrafluoroborate with Lys was isolated and its structure was confirmed by NMR spectroscopy. The binding site of pyrylium dyes with BSA – e-amino group of Lys was determined. Along with pyridinium luminophores, in aqueous solutions hydrolysis products are formed that are not bonded with protein and absorb in the short-wavelength region. The calculated amount of luminophore bound to BSA is two molecules of pyrylium dye per one molecule of BSA. The synthesized pyrylium dyes react with BSA in the mixture of phosphate buffer with methanol (pH 7.4) 3–4 orders of magnitude faster than the well-known julolidine dye Py-1. The relative reaction rates of (Е)-2,6-dimethyl-4-(4-{3-phenyl-5-[2,3,5,6-tetrafluorо-4-(4-hydroxypiperidine-1-yl)phenyl]-4,5-dihydro-1Н-pуrazole-1-yl}styryl) pyrуlium tetrafluoroborate with amino acids were determined as Lys > Cys >> Phe ≥ Arg. The obtained polyfluoro pyrylium-pyrazolinium dyes have the application perspective in the field of bioimaging, proteomic and biomedicine, due to high conjunction rate and efficiency with BSA and amino acids.
Texto integral

Sobre autores
V. Shelkovnikov
Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk State Technical University
Autor responsável pela correspondência
Email: vice@nioch.nsc.ru
Rússia, Novosibirsk; Novosibirsk
D. Doroshenko
Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: vice@nioch.nsc.ru
Rússia, Novosibirsk
I. Kargapolova
Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: vice@nioch.nsc.ru
Rússia, Novosibirsk
P. Kozlakov
Novosibirsk State Technical University
Email: vice@nioch.nsc.ru
Rússia, Novosibirsk
N. Shestakov
Novosibirsk State Technical University
Email: vice@nioch.nsc.ru
Rússia, Novosibirsk
Yu. Sotnikova
Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: vice@nioch.nsc.ru
Rússia, Novosibirsk
Bibliografia
- Roura S., Gálvez-Montón C., Bayes-Genis A. // J. Сell Mol. Med. 2013. V. 17. P. 693–703. https://doi.org/10.1111/jcmm.12018
- Richter J.R., Kasten B.B., Zinn K.R. // Adenoviral Vectors for Gene Therapy (2nd Edn). Academic Press, 2016. P. 767–802. https://doi.org/10.1016/B978-0-12-800276-6.00031-0
- Akkoul S., Ledee R., Leconge R., Leger C., Harba R., Pesnel S., Lerondel S., Lepape A., Vilcahuaman L. // Image and Signal Processing – 3rd Internation Conference. Cherbourg–Octeville, France, 2008. P. 163–172. https://doi.org/10.1007/978-3-540-69905-7
- Pletneva N.V., Goryacheva E.A., Artemyev I.V., Arkhipova S.F., Pletnev V.Z. // Russ. J. Bioorg. Chem. 2020. V. 46. P. 498–505. https://doi.org/10.1134/S1068162020040160
- Zhu S., Zhang J., Janjanam J., Bi J., Vegesna G., Tiwari A., Luo F., Wei J., Liu H. // Anal. Chim. Acta. 2013. V. 758. P. 138–144. https://doi.org/10.1016/j.aca.2012.10.026
- Donuru V.R., Zhu S., Green S., Liu H. // Polymer. 2010. V. 51. P. 5359–5368. https://doi.org/10.1016/j.polymer.2010.09.029
- Ксенофонтова К.В., Ксенофонтов А.А., Ходов И.А., Румянцев Е.В. // Изв. вузов. Сер. Химия и хим. технология. 2020. Т. 63. С. 4–11. https://doi.org/10.6060/ivkkt.20206305.6101
- Hötzer B., Medintz Hildebrandt N. // Small. 2012. V. 8. P. 2297–2326. https://doi.org/10.1002/smll.201200109
- Sokolov A.I. Myasnenko I.N., Baleeva N.S., Baranov M.S. // Russ. J. Bioorg. Chem. 2021. V. 47. P. 334–337. https://doi.org/10.1134/S1068162021010234
- Matvienko I.V., Bayramov V.M., Parygina N.A., Kurochkin V.E., Alekseev Ya.I. // Russ. J. Bioorg. Chem. 2020. V. 46. P. 349–359. https://doi.org/10.1134/S1068162020030127
- Krueger A.T., Imperiali B. // ChemBioChem. 2013. V. 14. P. 788–799. https://doi.org/10.1002/cbic.201300079
- Ding B., Xiao Y., Zhou H., Zhang X., Qu C., Xu F., Deng Z., Cheng Z., Hong X. // J. Med. Chem. 2019. V. 62. P. 20492059. https://doi.org/10.1021/acs.jmedchem.8b01682
- Beltran A., Burguete M.I., Luis S.V., Galindo F. // Eur. J. Org. Chem. 2017. V. 2017. P. 4864–4870. https://doi.org/10.1002/ejoc.201700815
- Bayer M., Koenig S. // Electrophoresis. 2016. V. 37. P. 2953–2958. https://doi.org/10.1002/elps.201600318
- Romieu A., Richard J.-A. // Tetrahedron Lett. 2016. V. 57. P. 317–320. https://doi.org/10.1016/j.tetlet.2015.12.010
- Kolchina E.F., Shelkovnikov V.V. // Russ. J. Org. Chem. 2015. V. 51. P. 1398–1403. https://doi.org/10.1134/S1070428015100073
- Шелковников В.В., Каргаполова И.Ю., Коротаев С.В., Орлова Н.А., Чуйков И.П., Надолинный В.А. // Изв. АН. Сер. хим. 2014. № 3. C. 635–641. https://doi.org/10.1007/s11172-014-0485-y
- Wetzl B.K., Yarmoluk S.M., Craig D.B., Wolfbeis O.S. // Angew. Chem. 2004. V. 43. P. 5400–5402. https://doi.org/10.1002/anie.200460508
- Katritzky A.R., Mokrosz J.L., De Rosa M. // J. Chem. Soc. 1984. № 5. P. 849–855.
- Azab H.A., El-Korashy S.A., Anwar Z.M., Khairy G.M., Duerkop A. // Chemistry. 2012. V. 243. P. 41–46. https://doi.org/10.1016/j.jphotochem.2012.05.029
- Чубаков В.П., Чубаков П.А., Плеханов А.И., Орлова Н.А., Каргаполова И.Ю., Шелковников В.В. // Рос. нанотехнологии. 2016. Т. 11. № 7–8. С. 30–34. https://doi.org/10.1134/S1995078016040054
- Sapozhnikova K.A., Gulyak E.L., Misyurin V.A., Simonova M.A., Ryabukhina E.V., Alexeeva A.V., Tikhonova N.A., Lyzhko N.A., Popova G.P., Misyurin A.V., Ustinov A.V., Korshun V.A., Alferova V.A., Ryazantsev D.Y., Brylev V.A. // Molecules. 2023. V. 28. Р. 425. https://doi.org/10.3390/molecules28010425
- Thayer A.M. // Chem. Eng. News. 2006. V. 84. № 23. P. 15–24.
- Menaa F., Menaa B., Sharts O.N. // J. Mol. Pharm. Org. Process. 2013. V. 1. P. 1–6. https://doi.org/10.4172/2329-9053.1000104
- Носова Э.В., Липунова Г.Н., Чарушин В.Н. // Усп. химии. 2009. Т. 78. № 5. С. 421–441. https://doi.org/10.1070/RC2009v078n05ABEH004049
- Casa S., Henary M. // Molecules. 2021. V. 26. Р. 1160. https://doi.org/10.3390/molecules26041160
- Moseev T.D., Varaksin M.V., Virlova E.A., Medvedeva M.V., Svalova T.S., Melekhin V.V., Tsmokaluk A.N., Kozitsina A.N., Charushin V.N., Chupakhin O.N. // Dyes Pigm. 2022. V. 202. P. 110251. https://doi.org/10.1016/j.dyepig.2022.110251
- Pace C.J., Zheng H., Mylvaganam R., Kim D., Gao J. // Angew. Chem. 2012. V. 51. P. 103–107. https://doi.org/10.1002/ange.201105857
- Pace C.J., Gao J. // Acc. Chem. Res. 2013. V. 46. P. 907–915. https://doi.org/10.1021/ar300086n
- Huang Z., Chen X., Wu G., Metrangolo P., Whitaker D., McCune J.A., Scherman O.A. // J. Am. Chem. Soc. 2020. V. 142. P. 7356−7361. https://doi.org/10.1021/jacs.0c02275
- Matiadis D., Sagnou M. // Int. J. Mol. Sci. 2020. V. 21. P. 1−38. https://doi.org/10.3390/ijms21155507
- George R.F., Kandeel M., El-Ansary D.Y., El Kerdawy A.M. // Biochem. J. 2020. V. 9. P. 103780. https://doi.org/10.1016/j.bioorg.2020.103780
- Wu P., Nielsen T.E., Clausen M.H. // Trends Pharmacol. Sci. 2015. V. 36. P. 422–439. https://doi.org/10.1016/j.tips.2015.04.005
- Ahsan M.J., Ali A., Ali A., Thiriveedhi A., Bakht M.A., Yusuf M., Salahuddin, Afzal O., Altamimi A.S.A. // ACS Omega. 2022. V. 7. P. 38207−38245. https://doi.org/10.1021/acsomega.2c05339
- Шмуйлович К.С., Орлова Н.А., Карпова Е.В., Шакиров М.М., Шелковников В.В. // Изв. АН. Сер. Хим. 2010. № 7. С. 1378–1382. https://doi.org/10.1007/s11172-010-0255-4
- Shelkovnikov V.V., Orlova N.A., Kargapolova I.Y., Erin K.D., Maksimov A.M., Chernonosov A.A. // Russ. J. Org. Chem. 2019. V. 55. P. 1504–1517. https://doi.org/10.1134/S1070428019100087
- Chen M.Z., Moily N.S., Bridgford J.L., Wood R.J., Radwan M., Smith T.A., Song Z., Tang B.Z., Tilley L., Xu X., Reid G.E., Pouladi M.A., Hong Y., Hatters D.M. // Nat. Commun. 2017. V. 8. Р. 474. https://doi.org/10.1038/s41467-017-00203-5
- Ariyasu S., Hayashi H., Xing B., Chiba S. // Bioconj. Chem. 2017. V. 28. P. 897−902. https://doi.org/10.1021/acs.bioconjchem.7b00024
- Weijers R.N. // Clin. Chem. 1977. V. 23. P. 1361–1362. https://doi.org/10.1093/clinchem/23.7.1361
- Молекулярная биология. Структура и функции белков: Учебник для биол. спец., вузов / Под ред. А.С. Спирина. Издательство: М.: Высшая школа, 1996. 335 с.
- Zhao P., Huang J.-W., Ji L.-N. // Spectrochimica Acta Part A. 2012. V. 88. P. 130–136. https://doi.org/10.1016/j.saa.2011.12.017
- Спицын А.Н., Уткин Д.В., Киреев М.Н., Овчинникова М.В., Кузнецов О.С., Ерохин П.С., Кочубей В.И. // Опт. и спектр. 2020. Т. 128. С. 430−434. https://doi.org/10.21883/OS.2020.03.49071.76-19
- Борзова В.А. // Механизмы защитного действия шаперонов при агрегации белков. Дисс. канд. биол. наук, Институт биохимии им. А.Н. Баха. Москва, 2016.
- Azim-Zadeh O., Hillebrecht A., Linne U., Marahiel M.A., Klebe G., Lingelbach K., Nyalwidhe J. // J. Biol. Chem. 2007. V. 282. P. 21609–21617. https://doi.org/10.1074/jbc.M610921200
- Anthony-Regnitz C.M., Wilson A.E., Sweazea K.L., Braun E.J. // J. Mol. Evol. 2020. V. 88. P. 653–661. https://doi.org/10.1007/s00239-020-09964-y
- Семиохин И.А., Страхов Б.В., Осипов А.И. // Кинетика химических реакций: учеб. пособие. М.: Изд-во МГУ, 1995, 351 с.
Arquivos suplementares
