Энцефалопатия недоношенных детей как неочевидная причина когнитивных и поведенческих расстройств
- Авторы: Пальчик А.Б.1
 - 
							Учреждения: 
							
- ФГБОУ ВО Санкт-Петербургский государственный педиатрический медицинский университет Минздрава РФ
 
 - Выпуск: Том 49, № 3 (2023)
 - Страницы: 126-133
 - Раздел: ОБЗОРЫ
 - URL: https://rjsvd.com/0131-1646/article/view/664040
 - DOI: https://doi.org/10.31857/S013116462370025X
 - EDN: https://elibrary.ru/GEUXTA
 - ID: 664040
 
Цитировать
Полный текст
Аннотация
Данная статья посвящена относительно новому понятию в педиатрии, неонатологии и неврологии – энцефалопатии недоношенных детей (Encephalopathy of Prematurity – EoP). Рассмотрена динамика понимания самого термина “энцефалопатия”. Показано, что данное состояние возникает у недоношенных детей преимущественно в середине беременности и в своих истоках имеет нейровоспаление, нарушение созревания олигодендроцитов, гипомиелинизацию, снижение объема коры головного мозга. EoP представляет собой интимное поражение головного мозга недоношенного с вовлечением серого вещества, особенно интернейронов (аксонно-нейронная болезнь), некистозной лейкомаляцией (активация микроглии) с неспецифической манифестацией в неонатальном периоде и развитием когнитивных и поведенческих расстройств в раннем детстве. Представлены возможные механизмы раннего вмешательства, таргетной терапии EoP и ее последствий в более старшем возрасте.
Ключевые слова
Об авторах
А. Б. Пальчик
ФГБОУ ВО Санкт-Петербургский государственный педиатрический медицинский университетМинздрава РФ
							Автор, ответственный за переписку.
							Email: xander57@mail.ru
				                					                																			                												                								Россия, Санкт-Петербург						
Список литературы
- Пальчик А.Б., Шабалов Н.П. Гипоксически-ишемическая энцефалопатия новорожденных. М.: МЕДпресс-информ, 2020. 302 с.
 - Principles and Practice of Child Neurology in Infancy / Ed. Kennedy C. London: MacKeith Press, 2012. 362 p.
 - Neonatal Encephalopathy and Cerebral Palsy (Defining the Pathogenesis and Pathophysiology). Washington, American College of Obstetricians and Gynecologists, 2003. 94 p.
 - Volpe J.J. Neurology of the Newborn. Philadelphia: Saunders, 2008. 1094 p.
 - Volpe J.J. The encephalopathy of prematurity–brain injury and impaired brain development inextricably intertwined // Semin. Pediatr. Neurol. 2009. V. 16. № 4. P. 167.
 - Fleiss B., Gressens P., Stolp H.B. Cortical Gray Matter Injury in Encephalopathy of Prematurity: Link to Neurodevelopmental Disorders // Front. Neurol. 2020. V. 11. P. 575.
 - Ananth C.V., Vintzileos A.M. Medically indicated preterm birth: recognizing the importance of the problem // Clin. Perinatol. 2008. V. 35. № 1. P. 53.
 - Dammann O., Leviton A. Maternal intrauterine infection, cytokines, and brain damage in the preterm newborn // Pediatr. Res. 1997. V. 42. № 1. P. 1.
 - Hagberg H., Mallard C., Ferriero D.M. et al. The role of inflammation in perinatal brain injury // Nat. Rev. Neurol. 2015. V. 11. № 4. P. 192.
 - Kuban K.C., O’Shea T.M., Allred E.N. et al. The breadth and type of systemic inflammation and the risk of adverse neurological outcomes in extremely low gestation newborns // Pediatr. Neurol. 2015. V. 52. № 1. P. 42.
 - Lau J., Magee F., Qiu Z. et al. Chorioamnionitis with a fetal inflammatory response is associated with higher neonatal mortality, morbidity, and resource use than chorioamnionitis displaying a maternal inflammatory response only // Am. J. Obstet. Gynecol. 2005. V. 193. № 3. Pt. 1. P. 708.
 - Manley B.J., Owen L.S., Hooper S.B. et al. Towards evidence-based resuscitation of the newborn infant // Lancet. 2017. V. 389. № 10079. P. 1639.
 - Obst S., Herz J., Alcazar M.A.A. et al. Perinatal Hyperoxia and Developmental Consequences on the Lung-Brain Axis // Oxid. Med. Cell. Longev. 2022. V. 2022. P. 5784146.
 - Pang Y., Dai X., Roller A. et al. Early postnatal lipopolysaccharide exposure leads to enhanced neurogenesis and impaired communicative functions in rats // PLoS One. 2016. V. 11. № 10. P. e0164403.
 - Stolp H.B., Turnquist C., Dziegielewska K.M. et al. Reduced ventricular proliferation in the foetal cortex following maternal inflammation in the mouse // Brain. 2011. V. 134. Pt. 11. P. 3236.
 - Dommergues M.A., Plaisant F., Verney C., Gressens P. Early microglial activation following neonatal excitotoxic brain damage in mice: a potential target for neuroprotection // Neuroscience. 2003. V. 121. № 3. P. 619.
 - Faustino J.V., Wang X., Johnson C.E. et al. Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke // J. Neurosci. 2011. V. 31. № 36. P. 12992.
 - Fernández–López D., Faustino J., Klibanov A.L. et al. Microglial cells prevent hemorrhage in neonatal focal arterial stroke // J. Neurosci. 2016. V. 36. № 10. P. 2881.
 - Lafemina M.J., Sheldon R.A., Ferriero D.M. Acute hypoxia-ischemia results in hydrogen peroxide accumulation in neonatal but not adult mouse brain // Pediatr. Res. 2006. V. 59. № 5. P. 680.
 - Van Steenwinckel J., Schang A.L., Krishnan M.L. et al. Decreased microglial Wnt/β-catenin signalling drives microglial pro-inflammatory activation in the developing brain // Brain. 2019. V. 142. № 12. P. 3806.
 - Stolp H.B., Fleiss B., Arai Y. et al. Interneuron Development is disrupted in preterm brains with diffuse white matter injury: observations in mouse and human // Front. Physiol. 2019. V. 10. P. 955.
 - Ball G., Srinivasan L., Aljabar P. et al. Development of cortical microstructure in the preterm human brain // Proc. Natl. Acad. Sci. USA. 2013. V. 110. № 23. P. 9541.
 - Ball G., Boardman J.P., Aljabar P. et al. The influence of preterm birth on the developing thalamocortical connectome // Cortex. 2013. V. 49. № 6. P. 1711.
 - Pandit A.S., Robinson E., Aljabar P. et al. Whole-brain mapping of structural connectivity in infants reveals altered connection strength associated with growth and preterm birth // Cereb. Cortex. 2014. V. 24. № 9. P. 2324.
 - Bayly P.V., Taber L.A., Kroenke C.D. Mechanical forces in cerebral cortical folding: a review of measurements and models // J. Mech. Behav. Biomed. Mater. 2014. V. 29. P. 568.
 - Llinares–Benadero C., Borrell V. Deconstructing cortical folding: genetic, cellular and mechanical determinants // Nat. Rev. Neurosci. 2019. V. 20. № 3. P. 161.
 - Striedter G.F., Srinivasan S., Monuki E.S. Cortical folding: when, where, how, and why // Annu. Rev. Neurosci. 2015. V. 38. P. 291.
 - Пальчик А.Б., Понятишин А.Е., Федорова Л.А. Неврология недоношенных детей. М.: МЕДпресс-информ, 2021. 405 с.
 - Гузева В.И., Пальчик А.Б., Понятишин А.Е. и др. Гипоксические поражения головного мозга у недоношенных новорожденных. Федеральное руководство по детской неврологии (под ред. В.И. Гузевой). М.: ООО “МК”, 2016. С. 42.
 - Ball G., Aljabar P., Arichi T. et al. Machine-learning to characterise neonatal functional connectivity in the preterm brain // Neuroimage. 2016. V. 124. Pt. A. P. 267.
 - Bouyssi–Kobar M., De Asis-Cruz J., Murnick J. et al. Altered functional brain network integration, segregation, and modularity in infants born very preterm at term-equivalent age // J. Pediatr. 2019. V. 213. P. 13.
 - Gozdas E., Parikh N.A., Merhar S.L. et al. Altered functional network connectivity in preterm infants: antecedents of cognitive and motor impairments? // Brain Struct. Funct. 2018. V. 223. № 8. P. 3665.
 - Rathbone R., Counsell S.J., Kapellou O. et al. Perinatal cortical growth and childhood neurocognitive abilities // Neurology. 2011. V. 77. № 16. P. 1510.
 - Tataranno M.L., Claessens N.H.P., Moeskops P. et al. Changes in brain morphology and microstructure in relation to early brain activity in extremely preterm infants // Pediatr. Res. 2018. V. 83. № 4. P. 834.
 - Whitehead K., Jones L., Laudiano–Dray M.P. et al. Altered cortical processing of somatosensory input in pre-term infants who had high-grade germinal matrix-intraventricular haemorrhage // Neuroimage Clin. 2020. V. 25. P. 102095.
 - Galinsky R., Draghi V., Wassink G. et al. Magnesium sulfate reduces EEG activity but is not neuroprotective after asphyxia in preterm fetal sheep // J. Cereb. Blood Flow Metab. 2017. V. 37. № 4. P. 1362.
 - van de Looij Y., Chatagner A., Quairiaux C. et al. Multi-modal assessment of long-term erythropoietin treatment after neonatal hypoxic-ischemic injury in rat brain // PLoS One. 2014. V. 9. № 4. P. e95643.
 - Mordel J., Sheikh A., Tsohataridis S. et al. Mild systemic inflammation and moderate hypoxia transiently alter neuronal excitability in mouse somatosensory cortex // Neurobiol. Dis. 2016. V. 88. P. 29.
 - Bowers K., Wink L.K., Pottenger A. et al. Phenotypic differences in individuals with autism spectrum disorder born preterm and at term gestation // Autism. 2015. V. 19. № 6. P. 758.
 - Elgen I., Sommerfelt K., Markestad T. Population based, controlled study of behavioural problems and psychiatric disorders in low birthweight children at 11 years of age // Arch. Dis. Child. Fetal Neonatal Ed. 2002. V. 87. № 2. P. F128.
 - Herradón G., Pérez–García C. Targeting midkine and pleiotrophin signalling pathways in addiction and neurodegenerative disorders: recent progress and perspectives // Br. J. Pharmacol. 2014. V. 171. № 4. P. 837.
 - Kim Y.B., Ryu J.K., Lee H.J. et al. Midkine, heparin-binding growth factor, blocks kainic acid-induced seizure and neuronal cell death in mouse hippocampus // BMC Neurosci. 2010. V. 11. P. 42.
 - Takada J., Ooboshi H., Ago T. et al. Postischemic gene transfer of midkine, a neurotrophic factor, protects against focal brain ischemia // Gene Ther. 2005. V. 12. № 6. P. 487.
 - Ross-Munro E., Kwa F., Kreiner J. et al. Midkine: The Who, What, Where, and When of a Promising Neurotrophic Therapy for Perinatal Brain Injury // Front. Neurol. 2020. V. 11. P. 568814.
 - Vasung L., Lepage C., Radoš M. et al. Quantitative and qualitative analysis of transient fetal compartments during prenatal human brain development // Front. Neuroanat. 2016. V. 10. P. 11.
 - Volpe J.J. Microglia: Newly discovered complexity could lead to targeted therapy for neonatal white matter injury and dysmaturation // J. Neonatal-Perinatal Med. 2019. V. 12. № 3. P. 239.
 - Hammond T.R., Robinton D., Stevens B. Microglia and the brain: Complementary partners in development and disease // Annu. Rev. Cell. Dev. Biol. 2018. V. 34. P. 523.
 - Ponnusamy V., Yip P.K. The role of microRNAs in newborn brain development and hypoxic ischaemic encephalopathy // Neuropharmacology. 2019. V. 149. P. 55.
 - Yang Y., Ye Y., Kong C. et al. MiR-124 Enriched exosomes promoted the M2 polarization of microglia and enhanced hippocampus neurogenesis after traumatic brain injury by inhibiting TLR4 pathway // Neurochem. Res. 2019. V. 44. № 4. P. 811.
 - Miron V.E., Boyd A., Zhao J.W. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination // Nat. Neurosci. 2013. V. 16. № 9. P. 1211.
 - Biran V., Phan Duy A., Decobert F. et al. Is melatonin ready to be used in preterm infants as a neuroprotectant? // Dev. Med. Child. Neurol. 2014. V. 56. № 8. P. 717.
 - Vaes J.E.G., van Kammen C.M., Trayford C. et al. Intranasal mesenchymal stem cell therapy to boost myelination after encephalopathy of prematurity // Glia. 2021. V. 69. № 3. P. 655.
 - Vaes J.E.G., Kosmeijer C.M., Kaal M. et al. Regenerative Therapies to Restore Interneuron Disturbances in Experimental Models of Encephalopathy of Prematurity // Int. J. Mol. Sci. 2020. V. 22. № 1. P. 211.
 - Heylen S.L., Gelders Y.G. Risperidone, a new antipsychotic with serotonin 5-HT2 and dopamine D2 antagonistic properties // Clin. Neuropharmacol. 1992. V. 15. Suppl 1. Pt. A. P. 180A.
 - Mattingly G.W., Wilson J., Rostain A.L. A clinician’s guide to ADHD treatment options // Postgrad. Med. 2017. V. 129. № 7. P. 657.
 - Hong M.P., Erickson C.A. Investigational drugs in early-stage clinical trials for autism spectrum disorder // Expert Opin. Investig. Drugs. 2019. V. 28. № 8. P. 709.
 - Hill-Yardin E.L., McKeown S.J., Novarino G., Grabrucker A.M. Extracerebral dysfunction in animal models of autism spectrum disorder // Adv. Anat. Embryol. Cell Biol. 2017. V. 224. P. 159.
 - Iannone L.F., Gomez–Eguilaz M., Citaro R., Russo E. The potential role of interventions impacting on gut-microbiota in epilepsy // Expert Rev. Clin. Pharmacol. 2020. V. 13. № 4. P. 423.
 
Дополнительные файлы
				
			
						
						
						
					
						
									





