Роль деполимеризации актина в обеспечении долговременного поддержания синаптической потенциации
- Авторы: Кудряшова И.В.1
-
Учреждения:
- Федеральное государственное бюджетное учреждение науки Институт высшей нервной деятельности и нейрофизиологии РАН
- Выпуск: Том 75, № 5 (2025)
- Страницы: 597-611
- Раздел: ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ПОВЕДЕНИЯ ЖИВОТНЫХ: ВОСПРИЯТИЕ ВНЕШНИХ СТИМУЛОВ, ДВИГАТЕЛЬНАЯ АКТИВНОСТЬ, ОБУЧЕНИЕ И ПАМЯТЬ
- URL: https://rjsvd.com/0044-4677/article/view/692568
- DOI: https://doi.org/10.31857/S0044467725050083
- ID: 692568
Цитировать
Полный текст



Аннотация
В поле СА1 переживающих срезов гиппокампа крыс исследовали изменение динамики развития посттетанических модификаций после высокочастотного раздражения коллатералей Шаффера на фоне блокады деполимеризации актина. С этой целью тетанизация в группе экспериментальных срезов производилась после аппликации ингибитора деполимеризации актина джасплакинолида. Введение джасплакинолида в перфузионный раствор прекращали через 15 мин после тетанизации, чтобы исключить его влияние в фазе поддержания долговременной потенциации (ДВП). Предполагалось, что блокада деполимеризации актина может затруднять процесс консолидации долговременных перестроек синаптической передачи. Обнаружено, что через час после тетанизации на фоне джасплакинолида процент прироста амплитуды ответа достоверно меньше, чем в контроле, однако снижение ранней ДВП не позволяет однозначно связать этот эффект с нарушением механизмов консолидации ДВП. Для выявления специфичных для процесса консолидации эффектов препарата был использован корреляционный анализ, а также комплекс преобразований, позволяющих нивелировать вклад фактора дефицита ранней ДВП. Обнаружено, что при одном и том же, даже достаточно высоком, уровне ранней потенциации депотенциация, которая нередко наблюдается при тетанизации 100 Гц, 1 с, отсутствует в экспериментальной, но не в контрольной группе. Этот факт может свидетельствовать об улучшении поддержания ДВП, хотя и на более низком по сравнению с контролем уровне. По другим показателям, учитывающим различия в уровне ранней потенциации, поддержание ДВП как минимум не ухудшалось. Полученные результаты не подтверждают, хотя и не опровергают гипотезу о необходимости деполимеризации актина для консолидации долговременных перестроек синаптической передачи. Предполагается, что в условиях блокады деполимеризации актина поддержание потенциации может обеспечиваться за счет локального синтеза белка в дендритах.
Ключевые слова
Об авторах
И. В. Кудряшова
Федеральное государственное бюджетное учреждение науки Институт высшей нервной деятельности и нейрофизиологии РАН
Автор, ответственный за переписку.
Email: iv_kudryashova@mail.ru
Москва, Россия
Список литературы
- Балабан П.М., Бородинова А.А. Нейрогенетические технологии исследования механизмов хранения памяти. Рос. Физиол. Журн. им. И.М. Сеченова. 2019. 105 (11): 1392–1405.
- Кудряшова И.В. Зависимость долговременной потенциации от исходных свойств СА3-СА1 синапсов: значение для исследования влияния внешних факторов на синаптическую пластичность гиппокампа. Журн. высш. нервн. деят. им. И.П. Павлова. 2017. 67 (6): 831–846.
- Кудряшова И.В. Молекулярные основы дестабилизации синапсов как фактор структурной пластичности. Нейрохимия. 2019. 36 (1): 3–13.
- Кудряшова И.В. Реорганизация актинового матрикса как фактор пресинаптической пластичности. Нейрохимия. 2021. 38 (3): 195–204.
- Кудряшова И.В. Тормозный контроль кратковременной пластичности при парной стимуляции зависит от полимеризации актина. Нейрохимия. 2022. 39 (2): 131–143.
- Кудряшова И.В. Свойства пресинаптической пластичности в зависимости от полимеризации актина. Биохимия. 2023а. 88 (3): 477–490.
- Кудряшова И.В. Координирующая роль актинового цитоскелета в кратковременной нейросетевой пластичности с участием возбуждающих и тормозных синапсов. Журн. высш. нервн. деят. им. И.П. Павлова. 2023б. 73 (5): 579–605.
- Кудряшова И.В. Роль деполимеризации актина в изменении тормозных влияний на долговременную потенциацию возбуждающих синапсов гиппокампа крыс. Журн. высш. нервн. деят. им. И.П.Павлова. 2024. 74 (6): 667–686.
- Чеснокова Е.А. Колосов П.М. Локальный синтез белка в дендритных окончаниях и способы его регуляции в норме и при пластических изменениях. Журн. высш. нервн. деят. им. И.П.Павлова. 2016. 66 (2): 163–180.
- Bleckert A., Photowala H., Alford S. Dual pools of actin at presynaptic terminals. J. Neurophysiol. 2012. 107: 3479–3492.
- Bloom O., Evergren E., Tomilin N., Kjaerulff O., Low P., Brodin L. et al. Colocalization of synapsin and actin during synaptic vesicle recycling. J. Cell Biol. 2003. 161: 737–747.
- Blundon J.A., Zakharenko S.S. Dissecting the Components of Long-Term Potentiation. Neuroscientist. 2008. 14: 598–608.
- Bosch M., Castro J., Saneyoshi T., Matsuno H., Sur M., Hayashi Y. Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron. 2014. 82: 444–459.
- Bramham C.R. Local protein synthesis, actin dynamics, and LTP consolidation. Curr. Opin. Neurobiol. 2008. 18: 524–531.
- Bubb M.R., Spector I., Beyer B.B., Fosen K.M. Effects of jasplakinolide on the kinetics of actin polymerization. An explanation for certain in vivo observations. J. Biol. Chem. 2000. 275: 5163–5170.
- Chen L.Y., Rex C.S., Casale M.S., Gall C.M., Lynch G. Changes in Synaptic Morphology Accompany Actin Signaling during LTP. J. Neurosci. 2007. 27: 5363–5372.
- Choquet D., Triller A. The Dynamic Synapse Neuron. 2013. 80: 691–703.
- Cingolani L.A., Goda Y. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat. Rev. Neurosci. 2008. 9: 344–356.
- Corti E., Duarte C.B. The role of post-translational modifications in synaptic AMPA receptor activity. Biochem. Soc. Trans. 2023. 51 (1): 315–330.
- Fukazawa Y., Saitoh Y., Ozawa F., Ohta Y., Mizuno K., Inokuchi K. Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron. 2003. 38: 447–460.
- Gal-Ben-Ari S., Kenney J.W., Ounalla-Saad H., Taha E., David, O., Levitan D. et al. Consolidation and translation regulation. Learn. Mem. 2012. 19: 410–422.
- Galvez B., Gross N., Sumikawa K. Activation of α7 nicotinic acetylcholine receptors protects potentiated synapses from depotentiation during theta pattern stimulation in the hippocampal CA1 region of rats. Neuropharmacology. 2016. 105: 378–387.
- Gu J., Lee C.W., Fan Y., Komlos D., Tang X., Sun C. et al. ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nat Neurosci. 2010. 13: 1208–1215.
- Guzman G.A., Guzman R.E., Jordan N., Hidalgo P. A Tripartite Interaction Among the Calcium Channel α1- and β-Subunits and F-Actin Increases the Readily Releasable Pool of Vesicles and Its Recovery After Depletion. Front. Cell Neurosci. 2019. 13: 125.
- Holtmaat A., Svoboda K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 2009. 10: 647–658.
- Holzinger A. Jasplakinolide: an actin-specific reagent that promotes actin polymerization. Meth. Mol. Biol. 2009. 586: 71–87.
- Honkura N., Matsuzaki M., Noguchi J., Ellis-Davies G.C., Kasai H. The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron. 2008. 57: 719–729.
- Kelly M.T., Yao Y., Sondhi R., Sacktor T.C. Actin polymerization regulates the synthesis of PKMzeta in LTP. Neuropharmacology. 2007. 52: 41–45.
- Kim C.H., Lisman J.E. A role of actin filament in synaptic transmission and long-term potentiation. J. Neurosci. 1999. 19: 4314–4324.
- Korn E.D., Carlier M.F., Pantaloni D. Actin polymerization and ATP hydrolysis. Science. 1987. 238: 638–644.
- Kramar E.A., Lin B., Rex C.S., Gall C.M., Lynch G. Integrin-driven actin polymerization consolidates long-term potentiation. Proc. Natl. Acad. Sci. USA. 2006. 103: 5579–5584.
- Krucker T., Siggins G.R., Halpain S. Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc. Natl. Acad. Sci. USA. 2000. 97: 6856–6861.
- Lee J.S., Ho W.K., Lee S.H. Actin-dependent rapid recruitment of reluctant synaptic vesicles into a fast-releasing vesicle pool. Proc. Natl. Acad. Sci. USA. 2012. 109: E765–774.
- Lin B., Kramar E.A., Bi X., Brucher F.A., Gall C.M., Lynch G. Theta stimulation polymerizes actin in dendritic spines of hippocampus. J. Neurosci. 2005. 25: 2062–2069.
- Lynch G., Rex C.S., Gall C.M. LTP consolidation: substrates, explanatory power, and functional significance. Neuropharmacology. 2007. 52: 12–23.
- McGough A., Pope B., Chiu W., Weeds A. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J. Cell Biol. 1997. 138: 771–781.
- Messaoudi E., Kanhema T., Soule J., Tiron A., Dagyte G., da Silva B., Bramham C.R. Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J. Neurosci. 2007. 27: 10445–10455.
- Meyer D., Bonhoeffer T., Scheuss V. Balance and stability of synaptic structures during synaptic plasticity. Neuron. 2014. 82: 430–443.
- Michel K., Müller J.A., Oprisoreanu A.M., Schoch S. The presynaptic active zone: a dynamic scaffold that regulates synaptic efficacy. Exp. Cell Res. 2015. 335: 157–164.
- Miki T., Malagon G., Pulido C., Llano I., Neher E., Marty A. Actin- and myosin-dependent vesicle loading of presynaptic docking sites prior to exocytosis. Neuron. 2016. 91: 808–823.
- Monday H.R., Younts T.J., Castillo P.E. Long-Term Plasticity of Neurotransmitter Release: Emerging Mechanisms and Contributions to Brain Function and Disease. Annu. Rev. Neurosci. 2018. 41: 299–322.
- Nakayama A.Y., Harms M.B., Luo L. Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J. Neurosci. 2000. 20: 5329–5338.
- Niwa R., Nagata-Ohashi K., Takeichi M., Mizuno K., Uemura T. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell. 2002. 108: 233–246.
- Okamoto K., Narayanan R., Lee S.H., Murata K., Hayashi Y. The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proc. Natl. Acad. Sci USA. 2007. 104: 6418–6423.
- Ouyang Y., Wong M., Capani F., Rensing N., Lee C.-S., Liu Q. et al. Transient decrease in F-actin may be necessary for translocation of proteins into dendritic spines. Eur. J. Neurosci. 2005. 22: 2995–3005.
- Peng Y., Zhao J., Gu Q-H.H., Chen R-Q.Q., Xu Z., Yan J-Z.Z. et al. Distinct trafficking and expression mechanisms underlie LTP and LTD of NMDA receptor-mediated synaptic responses. Hippocampus. 2010. 20: 646–658.
- Priel A., Tuszynski J.A., Woolf N.J. Neural cytoskeleton capabilities for learning and memory J. Biol. Physics. 2010. 36: 3–21.
- Ramachandran B., Frey J.U. Interfering with the actin network and its effect on long-term potentiation and synaptic tagging in hippocampal CA1 neurons in slices in vitro. J. Neurosci. 2009. 29: 12167–12173.
- Reinhard J.R., Kriz A., Galic M., Angliker N., Rajalu M., Vogt K.E., Ruegg M.A. The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory. Nat. Commun. 2016. 7: 11613.
- Rex C.S., Chen L.Y., Sharma A., Liu J., Babayan A.H., Gall C.M., Lynch G. Different Rho GTPase–dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J. Cell Biol. 2009. 186: 85–97.
- Rex C.S., Gavin C.F., Rubio M.D., Kramar E.A., Chen L.Y., Jia Y. et al. Myosin IIB regulates actin dynamics during synaptic plasticity and memory formation. Neuron. 2010. 67: 603–617.
- Rust M.B., Gurniak C.B., Renner M., Vara H., Morando L., Görlich A. et al. Learning, AMPA receptor mobility and synaptic plasticity depend on n-cofilin-mediated actin dynamics. EMBO. J. 2010. 29. 1889–1902.
- Sankaranarayanan S., Atluri P.P., Ryan T.A. Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nat. Neurosci. 2003. 6: 127–135.
- Shupliakov O., Bloom O., Gustafsson J.S., Kjaerulff O., Low P., Tomilin N. et al. Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton. Proc. Natl. Acad. Sci. USA. 2002. 99: 14476–14481.
- Tong L., Prieto G.A., Cotman C.W. IL-1β suppresses cLTP-induced surface expression of GluA1 and actin polymerization via ceramide-mediated Src activation. J. Neuroinflammation. 2018. 15: 127.
- Tamano H., Minamino T., Fujii H., Takada S., Nakamura M., Ando M., Takeda A. Blockade of intracellular Zn2+ signaling in the dentate gyrus erases recognition memory via impairment of maintained LTP. Hippocampus. 2015. 25: 952–962.
- Tsokas P., Ma T., Iyengar R., Landau E.M., Blitzer R.D. Mitogenactivated protein kinase upregulates the dendritic translation machinery in long-term potentiation by controlling the mammalian target of rapamycin pathway. J. Neurosci. 2007. 27: 5885–5894.
- Yang Y., Wang X.B., Frerking M., Zhou Q. Spine expansion and stabilization associated with long-term potentiation. J. Neurosci. 2008. 28: 5740–5751.
- Yao J., Qi J., Chen G. Actin-Dependent Activation of Presynaptic Silent Synapses Contributes to Long-Term Synaptic Plasticity in Developing Hippocampal Neurons. J. Neurosci. 2006. 26: 8137–8147.
- Yasui T., Fujisawa Sh., Tsukamoto M., Matsuki N., Ikegaya Y. Dynamic synapses as archives of synaptic history: state-dependent redistribution of synaptic efficacy in the rat hippocampal CA1. J. Physiol. 2005. 566: 143–160.
- Zhou Q., Xiao M., Nicoll R.A. Contribution of cytoskeleton to the internalization of AMPA receptors. Proc. Natl. Acad. Sci. USA. 2001. 98: 1261–1266.
Дополнительные файлы
