AVERAGING OF INTEGRO-DIFFERENTIAL SYSTEMS OF EQUATIONS WITH MULTIPOINT BOUNDARY CONDITIONS CONDITIONS
- Autores: Levenshtam V.B.1,2,3, Yavaeva M.R.1
-
Afiliações:
- Southern Federal University
- Gubkin Mathematical Institute named after V. L. Steklov RAS (V. L. Steklov Mathematical Institute Russian Academy of Sciences)
- Southern Mathematical Institute - Branch of the All-Russian Scientific Center of RAS
- Edição: Volume 65, Nº 5 (2025)
- Páginas: 665-672
- Seção: Partial Differential Equations
- URL: https://rjsvd.com/0044-4669/article/view/686924
- DOI: https://doi.org/10.31857/S0044466925050057
- EDN: https://elibrary.ru/IGDKCA
- ID: 686924
Citar
Resumo
In this paper we consider a system of integro-differential equations with rapidly time oscillating data and multipoint integral boundary conditions. The latter may depend explicitly on a large parameter ω — high frequency of oscillations of the initial system of equations. For this problem the limit problem at ω → ∞is constructed and the limit transition is justified. Thereby, the time averaging method, which is also called the Krylov–Bogoliubov averaging method, is justified for the above problem in this paper.
Sobre autores
V. Levenshtam
Southern Federal University; Gubkin Mathematical Institute named after V. L. Steklov RAS (V. L. Steklov Mathematical Institute Russian Academy of Sciences); Southern Mathematical Institute - Branch of the All-Russian Scientific Center of RAS
Email: vlevenshtam@yandex.ru
Rostov-on-Don, Russia; Moscow, Russia; Vladikavkaz, Russia
M. Yavaeva
Southern Federal University
Email: marinayavaeva@yandex.ru
Rostov-on-Don, Russia
Bibliografia
- Боголюбов Н.Н. О некоторых статистических методах в математической физике. Киев: Изд. АН УССР, 1945.
- Боголюбов Н.Н., Митропольский Н.М. Асимптотические методы в теории нелинейных колебаний. М.: Наука, 1974.
- Константинов М.М., Байнов Д.Д. О применении метода усреднения к некоторым многоточечным краевым задачам // Bull. Math. da la Soc. Sci. Math. de la R. S. de la Roumanie. 1974. Т. 18(66).№3/4. С. 307–310.
- Левенштам В.Б., Шубин П.Е. Обоснование метода усреднения для дифференциальных уравнений с большими быстро осциллирующими слагаемыми и краевыми условиями // Матем. заметки. 2016. Т. 100. Вып. 1. С. 94–108.
- Bigirindavyi D., Levenshtam V.B. Justification of the averaging method for differential equations with multipoint boundary value problems // Springer Proceedings in Mathematics and Statistics. 2021. Vol. 357. P. 137–142.
- Симоненко И.Б. Обоснование метода осреднения для абстрактных параболических уравнений // Матем. сб. 1970. Т. 81(123).№1. С. 53–61.
Arquivos suplementares
