HYDROTHERMAL SYNTHESIS OF K2CE(PO4)2 · ХH2O AND ANALYSIS OF ITS PHOTOPROTECTIVE PROPERTIES

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

A new method for obtaining K2Ce(PO4)2 ∙ xH2O (s. g. I41/amd, a = b = 6.8300(2), c = 17.8488(4) Å, V = 832.63(4) Å3, Z = 4) under hydrothermal conditions has been developed. It has been established that the thermolysis of this compound proceeds through three stages of mass loss with the formation of CePO4 и K4P2O7 as intermediate products, which upon further heating form a mixture of CePO4 and K3Ce(PO4)2. The calculated values of the sun protection factor and UVA protection factor for K2Ce(PO4)2 ∙ xH2O were 2.1 and 2.0, respectively. In relation to the human keratinocyte cell line (HaCaT), a photoprotective effect of K2Ce(PO4)2 ∙ xH2O was recorded. For the first time, the photoactive properties of KCe2(PO4)3 and K2Ce(PO4)2 ∙ хH2O in the decomposition reaction of methylene blue were evaluated. A significant slowdown in the decomposition reaction of an organic dye was demonstrated when using K2Ce(PO4)2 ∙ хH2O.

作者简介

T. Kozlova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: taisiya@igic.ras.ru
Leninskii pr. 31, Moscow, 119991 Russia

D. Vasilyeva

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; National Research University Higher School of Economics

Email: taisiya@igic.ras.ru
Leninskii pr. 31, Moscow, 119991 Russia; Myasnitskaya ul. 20, Moscow 101000 Russia

I. Savintseva

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: taisiya@igic.ras.ru
Institutskaja str., 3, Moscow region, Pushchino, 142290 Russia

A. Popov

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: taisiya@igic.ras.ru
Institutskaja str., 3, Moscow region, Pushchino, 142290 Russia

N. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: taisiya@igic.ras.ru
Leninskii pr. 31, Moscow, 119991 Russia

D. Kozlov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: taisiya@igic.ras.ru
Leninskii pr. 31, Moscow, 119991 Russia

参考

  1. Serpone N. // Photochem. Photobiol. Sci. 2021. V. 20. № 2. P. 189. https://doi.org/10.1007/s43630-021-00013-1
  2. Pols J.C., Williams G.M., Pandeya N. et al. // Cancer Epidemiol. Biomarkers Prev. 2006. V. 15. № 12. P. 2546. https://doi.org/10.1158/1055-9965.EPI-06-0352
  3. D’Orazio J., Jarrett S., Amaro-Ortiz A. et al. // Int. J. Mol. Sci. 2013. V. 14. № 6. P. 12222. https://doi.org/10.3390/ijms140612222
  4. Egambaram O.P., Kesavan Pillai S., Ray S.S. // Photochem. Photobiol. 2020. V. 96. № 4. P. 779. https://doi.org/10.1111/php.13208
  5. Schneider S.L., Lim H.W. // Photodermatol. Photoimmunol. Photomed. 2019. V. 35. № 6. P. 442. https://doi.org/10.1111/phpp.12439
  6. Serpone N., Dondi D., Albini A. // Inorg. Chim. Acta. 2007. V. 360. № 3. P. 794. https://doi.org/10.1016/j.ica.2005.12.057
  7. Nery É.M., Martinez R.M., Velasco M.V.R. et al. // J. Cosmet. Dermatol. 2021. V. 20. № 4. P. 1061. https://doi.org/10.1111/jocd.13694
  8. Smijs T.G., Pavel S. // Nanotechnol. Sci. Appl. 2011. V. 4. P. 95. https://doi.org/10.2147/NSA.S19419
  9. Lewicka Z.A., Yu W.W., Oliva B.L. et al. // J. Photochem. Photobiol., A: Chem. 2013. V. 263. P. 24. https://doi.org/10.1016/j.jphotochem.2013.04.019
  10. Onoda H., Tanaka R. // J. Mater. Res. Technol. 2019. V. 8. № 6. P. 5524. https://doi.org/10.1016/j.jmrt.2019.09.020
  11. Hiromoto S., Inoue M., Taguchi T. et al. // Acta Biomater. 2015. V. 11. P. 520. https://doi.org/10.1016/j.actbio.2014.09.026
  12. Carella F., Degli Esposti L., Adamiano A. et al. // Materials (Basel). 2021. V. 14. № 21. P. 6398. https://doi.org/10.3390/ma14216398
  13. Onoda H., Yamaoka K., Charoonsuk T. et al. // J. Aust. Ceram. Soc. 2025. https://doi.org/10.1007/s41779-025-01190-3
  14. De Lima J.F., Serra O.A. // Dye Pigment. 2013. V. 97. № 2. P. 291. https://doi.org/10.1016/j.dyepig.2012.12.020
  15. Kurajica S., Brleković F., Keser S. et al. // Molecules. 2025. V. 30. № 2. P. 405. https://doi.org/10.3390/molecules30020405
  16. Seixas V.C., Serra O.A. // Molecules. 2014. V. 19. № 7. P. 9907. https://doi.org/10.3390/molecules19079907
  17. Sato T., Yin S. // Phosphorus Res. Bull. 2010. V. 24. P. 43. https://doi.org/10.3363/prb.24.43
  18. Kozlova T.O., Vasilyeva D.N., Kozlov D.A. et al. // Molecules. 2024. V. 29. № 9. P. 2157. https://doi.org/10.3390/molecules29092157
  19. Sato T., Sato C., Yin S. // Phosphorus Res. Bull. 2008. V. 22. P. 17. https://doi.org/10.3363/prb.22.17
  20. Kozlova T.O., Popov A.L., Kolesnik I.V. et al. // J. Mater. Chem. B. 2022. V. 10. № 11. P. 1775. https://doi.org/10.1039/d1tb02604f
  21. Kozlova T.O., Sheichenko E.D., Vasilyeva D.N. et al. // Nanosyst. Physics, Chem. Math. 2024. V. 15. № 2. P. 215. https://doi.org/10.17586/2220-8054-2024-15-2-215-223
  22. Bevara S., Mishra K.K., Patwe S.J. et al. // Inorg. Chem. 2017. V. 56. № 6. P. 3335. https://doi.org/10.1021/acs.inorgchem.6b02870
  23. Xu Y., Feng S., Pang W. // Mater. Lett. 1996. V. 28. № 4–6. P. 499. https://doi.org/10.1016/0167-577X(96)00112-7
  24. Kozlova T.O., Vasilyeva D.N., Kozlov D.A. et al. // Nanosyst. Phys. Chem. Math. 2023. V. 14. № 1. P. 112. https://doi.org/10.17586/2220-8054-2023-14-1-112-119
  25. Baranchikov A.E., Kozlova T.O., Istomin S.Y. et al. // ChemistrySelect. 2024. V. 9. № 17. e202401010. https://doi.org/10.1002/slct.202401010
  26. Shekunova T.O., Istomin S.Y., Mironov A.V. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. № 27. P. 3242. https://doi.org/10.1002/ejic.201801182
  27. Kolesnik I.V., Shcherbakov A.B., Kozlova T.O. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 7. P. 960. https://doi.org/10.1134/S0036023620070128
  28. Lutterotti L. // Nucl. Instrum. Methods Phys. Res., Sect. B: Beam Interact. with Mater. Atoms. 2010. V. 268. № 3–4. P. 334. https://doi.org/10.1016/j.nimb.2009.09.053
  29. Salvado M.A., Pertierra P., Trobajo C. et al. // J. Am. Chem. Soc. 2007. V. 129. № 36. P. 10970. https://doi.org/10.1021/ja0710297
  30. Torres-Díaz I., Hendley R.S., Mishra A. et al. // Soft Matter. 2022. V. 18. № 6. P. 1319. https://doi.org/10.1039/D1SM01523K
  31. Kurazhkovskaya V.S., Bykov D.M., Orlova A.I. // J. Struct. Chem. 2004. V. 45. № 6. P. 966. https://doi.org/10.1007/s10947-005-0087-5
  32. Clavier N., Mesbah A., Szenknect S. et al. // Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2018. V. 205. P. 85. https://doi.org/10.1016/j.saa.2018.07.016
  33. Hadrich A., Lautie A., Mhiri T. et al. // Vib. Spectrosc. 2001. V. 26. P. 51. https://doi.org/10.1016/S0924-2031(01)00100-X
  34. Nabhan E., Abd-Allah W.M., Ezz-El-Din F.M. // Results Phys. 2017. V. 7. P. 119. https://doi.org/10.1016/j.rinp.2016.12.001
  35. Ghoneim N.A., Abdelghany A.M., Abo-Naf S.M. et al. // J. Mol. Struct. 2013. V. 1035. P. 209. https://doi.org/10.1016/j.molstruc.2012.11.034
  36. Santagneli S.H., de Araujo C.C., Strojek W. et al. // J. Phys. Chem. B. 2007. V. 111. № 34. P. 10109. https://doi.org/10.1021/jp072883n
  37. Bevara S., Achary S.N., Patwe S.J. et al. // Dalton Trans. 2016. V. 45. № 3. P. 980. https://doi.org/10.1039/c5dt03288a
  38. Szczygiel I. // Thermochim. Acta. 2004. V. 417. № 1. P. 75. https://doi.org/10.1016/j.tca.2004.01.020
  39. Tronev I. V., Sheichenko E.D., Razvorotneva L.S. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 3. P. 263. https://doi.org/10.1134/S0036023622602744
  40. ISO 24443:2012. Determination of sunscreen UVA photoprotection in vitro.
  41. Rodrigues N.D.N., Stavros V.G. // Sci. Prog. 2018. V. 101. № 1. P. 8. https://doi.org/10.3184/003685018X15166183479666
  42. Laquerriere P., Grandjean-Laquerriere A., Jallot E. et al. // Biomaterials. 2003. V. 24. № 16. P. 2739. https://doi.org/10.1016/S0142-9612(03)00089-9
  43. Sahu D., Kannan G.M., Tailang M. et al. // J. Nanosci. 2016. V. 2016. P. 1. https://doi.org/10.1155/2016/4023852
  44. Horie M., Nishio K., Fujita K. et al. // Chem. Res. Toxicol. 2009. V. 22. № 3. P. 543. https://doi.org/10.1021/tx800289z
  45. Kozlova T.O., Popov A.L., Romanov M.V. et al. // Nanosyst. Physics, Chem. Math. 2023. V. 14. № 2. P. 223. https://doi.org/10.17586/2220-8054-2023-14-2-223-230

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025