Противогриппозная активность соединений, полученных из лекарственных растений (часть II)
- Авторы: Федорова В.А.1, Сивак К.В.1, Стосман К.И.1
-
Учреждения:
- Научно-исследовательский институт гриппа им. А. А. Смородинцева Минздрава России
- Выпуск: Том 61, № 2 (2025)
- Страницы: 3-20
- Раздел: ОБЗОРЫ
- URL: https://rjsvd.com/0033-9946/article/view/687164
- DOI: https://doi.org/10.31857/S0033994625020019
- EDN: https://elibrary.ru/FYJFYD
- ID: 687164
Цитировать
Аннотация
Во второй части обзора представлен анализ публикаций, посвященных противогриппозной активности веществ, содержащихся в 36 лекарственных растениях. Каждое из описываемых соединений имеет разнообразные механизмы действия на вирус гриппа.
Ключевые слова
Полный текст

Об авторах
В. А. Федорова
Научно-исследовательский институт гриппа им. А. А. Смородинцева Минздрава России
Автор, ответственный за переписку.
Email: vikusik_bio_24@mail.ru
Россия, Санкт-Петербург
К. В. Сивак
Научно-исследовательский институт гриппа им. А. А. Смородинцева Минздрава России
Email: vikusik_bio_24@mail.ru
Россия, Санкт-Петербург
К. И. Стосман
Научно-исследовательский институт гриппа им. А. А. Смородинцева Минздрава России
Email: vikusik_bio_24@mail.ru
Россия, Санкт-Петербург
Список литературы
- Yu C., Yan Y., Wu X., Zhang B., Wang W., Wu Q. 2010. Anti-influenza virus effects of the aqueous extract from Mosla scabra. — J. Ethnopharmacol. 127(2): 280–285. https://doi.org/10.1016/j.jep.2009.11.008
- Cai W., Zhang S. L. 2022. Anti-inflammatory mechanisms of total flavonoids from Mosla scabra against influenza A virus-induced pneumonia by integrating network pharmacology and experimental verification. — Evid. Based Complement. Alternat. Med. Article ID2154485, 10 p. https://doi.org/10.1155/2022/2154485
- Yu C. H., Yu W. Y., Fang J., Zhang H. H., Ma Y., Yu B., Wu F., Wu X. N. 2016. Mosla scabra flavonoids ameliorate the influenza A virus-induced lung injury and water transport abnormality via the inhibition of PRR and AQP signaling pathways in mice. — J. Ethnopharmacol. 179: 146–155. https://doi.org/10.1016/j.jep.2015.12.034
- Cai W., Wu L. R., Zhang S. L. 2022. Lignans from Mosla scabra ameliorated influenza A virus-induced pneumonia via inhibiting macrophage activation. — Evid. Based Complement. Alternat. Med. Article ID1688826, 11 p. https://doi.org/10.1155/2022/1688826
- Wu Q. F., Wang W., Dai X. Y., Wang Z. Y., Shen Z. H., Ying H. Z., Yu C. H. 2012. Chemical compositions and anti-influenza activities of essential oils from Mosla dianthera. — J. Ethnopharmacol. 139(2): 668–671. https://doi.org/10.1016/j.jep.2011.11.056
- Zheng K., Wu S. Z., Lv Y. W., Pang P., Deng L., Xu H. C., Shi Y. C., Chen X. Y. 2021. Carvacrol inhibits the excessive immune response induced by influenza virus A via suppressing viral replication and TLR/RLR pattern recognition. — J. Ethnopharmacol. 268: 113555. https://doi.org/10.1016/j.jep.2020.113555
- Ha T. K.Q., Lee B. W., Nguyen N. H., Cho H. M., Venkatesan T., Doan T. P., Kim E., Oh W. K. 2020. Antiviral activities of compounds isolated from Pinus densiflora (pine tree) against the influenza A virus. — Biomolecules. 10(5): 711. https://doi.org/10.3390/biom10050711
- Lee B. W., Ha T. K.Q., Cho H. M., An J. P., Kim S. K., Kim C. S., Kim E., Oh W. K. 2020. Antiviral activity of furanocoumarins isolated from Angelica dahurica against influenza a viruses H1N1 and H9N2. — J. Ethnopharmacol. 259: 112945. https://doi.org/10.1016/j.jep.2020.112945
- Park J. Y., Jeong H. J., Kim Y. M., Park S. J., Rho M. C., Park K. H., Ryu Y. B., Lee W. S. 2011. Characteristic of alkylated chalcones from Angelica keiskei on influenza virus neuraminidase inhibition. — Bioorg. Med. Chem. Lett. 21(18): 5602–5604. https://doi.org/10.1016/j.bmcl.2011.06.130
- Sánchez M., González-Burgos E., Iglesias I., Gómez-Serranillos M.P. 2020. Pharmacological update properties of Aloe vera and its major active constituents. — Molecules. 25(6): 1324. https://doi.org/10.3390/molecules25061324
- Huang C. T., Hung C. Y., Hseih Y. C., Chang C. S., Velu A. B., He Y. C., Huang Y. L., Chen T. A., Chen T. C., Lin C. Y., Lin Y. C., Shih S. R., Dutta A. 2019. Effect of aloin on viral neuraminidase and hemagglutinin-specific T cell immunity in acute influenza. — Phytomedicine. 64: 152904. https://doi.org/10.1016/j.phymed.2019.152904
- Choi J. G., Lee H., Kim Y. S., Hwang Y. H., Oh Y. C., Lee B., Moon K. M., Cho W. K., Ma J. Y. 2019. Aloe vera and its components inhibit influenza A virus-induced autophagy and replication. — Am. J. Chin. Med. 47(6): 1307–132. https://doi.org/10.1142/S0192415X19500678
- Wang H. X., Zeng M. S., Ye Y., Liu J. Y., Xu P. P. 2021. Antiviral activity of puerarin as potent inhibitor of influenza virus neuraminidase. — Phytother. Res. 35(1): 324–336. https://doi.org/10.1002/ptr.6803
- Zeng M. S., Yu W. D., Wang H. X., Xu P. P., Liu J. Y. 2021. Puerarin reduces impairment of intestinal and adipose immune responses to influenza virus infection in mice. — Arch. Virol. 166(9): 2387–2397. https://doi.org/10.1007/s00705-021-05112-z
- Liao Q., Qian Z., Liu R., An L., Chen X. 2013. Germacrone inhibits early stages of influenza virus infection. — Antiviral. Res. 100(3): 578–588. https://doi.org/10.1016/j.antiviral.2013.09.021
- Li Y., Lai Y., Wang Y., Liu N., Zhang F., Xu P. 2016. 1,8-cineol protect against influenza-virus-induced pneumonia in mice. — Inflammation. 39(4): 1582–1593. https://doi.org/10.1007/s10753-016-0394-3
- Madia V. N., Toscanelli W., De Vita D., De Angelis M., Messore A., Ialongo D., Scipione L., Tudino V., D’Auria F.D., Di Santo R., Garzoli S., Stringaro A., Colone M., Marchetti M., Superti F., Nencioni L., Costi R. 2022. Ultrastructural damages to H1N1 influenza virus caused by vapor essential oils. — Molecules. 27(12): 3718. https://doi.org/10.3390/molecules27123718
- Garozzo A., Timpanaro R., Stivala A., Bisignano G., Castro A. 2011. Activity of Melaleuca alternifolia (tea tree) oil on Influenza virus A/PR/8: study on the mechanism of action. — Antiviral Res. 89(1): 83–88. https://doi.org/10.1016/j.antiviral.2010.11.010
- Li X., Duan S., Chu C., Xu J., Zeng G., Lam A. K., Zhou J., Yin Y., Fang D., Reynolds M. J., Gu H., Jiang L. 2013. Melaleuca alternifolia concentrate inhibits in vitro entry of influenza virus into host cells. — Molecules. 18(8): 9550–9566. https://doi.org/10.3390/molecules18089550
- Liu F., Cao W., Deng C., Wu Z., Zeng G., Zhou Y. 2016. Polyphenolic glycosides isolated from Pogostemon cablin (Blanco) Benth. as novel influenza neuraminidase inhibitors. — Chem. Cent. J. 10: 51. https://doi.org/10.1186/s13065-016-0192-x
- Wu H., Li B., Wang X., Jin M., Wang G. 2011. Inhibitory effect and possible mechanism of action of patchouli alcohol against influenza A (H2N2) virus. — Molecules. 16(8): 6489–6501. https://doi.org/10.3390/molecules16086489
- Li Y. C., Peng S. Z., Chen H. M., Zhang F. X., Xu P. P., Xie J. H., He J. J., Chen J. N., Lai X. P., Su Z. R. 2012. Oral administration of patchouli alcohol isolated from Pogostemonis Herba augments protection against influenza viral infection in mice. — Int. Immunopharmacol. 12(1): 294–301. https://doi.org/10.1016/j.intimp.2011.12.007
- Yu Y., Zhang Y., Wang S., Liu W., Hao C., Wang W. 2019. Inhibition effects of patchouli alcohol against influenza a virus through targeting cellular PI3K/Akt and ERK/MAPK signaling pathways. — Virol. J. 16(1): 163. https://doi.org/10.1186/s12985-019-1266-x
- Fan Y., Zhang Q., Zhang W., Lai Y., Long H., Huang H., Zhan S., Liu X., Lai J., Zhang Z., Pan P., Su Z., Li G. 2023. Inhibitory effects of Patchouli alcohol on the early lifecycle stages of influenza A virus. — Front. Microbiol. 13: 938868. https://doi.org/10.3389/fmicb.2022.938868
- Li B., Ni Y., Zhu L. J., Wu F. B., Yan F., Zhang X., Yao X. S. 2015. Flavonoids from Matteuccia struthiopteris and their anti-influenza virus (H1N1) activity. — J. Nat. Prod. 78(5): 987–995. https://doi.org/10.1021/np500879t
- Chavan R. D., Shinde P., Girkar K., Madage R., Chowdhary A. 2016. Assessment of anti-influenza activity and hemagglutination inhibition of Plumbago indica and Allium sativum extracts. — Pharmacogn. Res. 8(2): 105–111. https://doi.org/10.4103/0974-8490.172562
- Rouf R., Uddin S. J., Sarker D. K., Islam M. T., Ali E. S., Shilpi J. A., Nahar L., Tiralongo E., Sarker S. D. 2020. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. — Trends Food Sci. Technol. 104: 219–234. https://doi.org/10.1016/j.tifs.2020.08.006
- Ming L., Li Z., Li X., Tang L., He G. 2021. Antiviral activity of diallyl trisulfide against H9N2 avian influenza virus infection in vitro and in vivo. — Virol. J. 18(1): 171. https://doi.org/10.1186/s12985-021-01641-w
- Ardebili A., Pouriayevali M. H., Aleshikh S., Zahani M., Ajorloo M., Izanloo A., Siyadatpanah A., Razavi Nikoo H., Wilairatana P., Coutinho H. D.M. 2021. Antiviral therapeutic potential of curcumin: An update. — Molecules. 26(22): 6994. https://doi.org/10.3390/molecules26226994
- Praditya D., Kirchhoff L., Brüning J., Rachmawati H., Steinmann J., Steinmann E. 2019. Anti-infective properties of the golden spice curcumin. — Front. Microbiol. 10: 912. https://doi.org/10.3389/fmicb.2019.00912
- Chen T. Y., Chen D. Y., Wen H. W., Ou J. L., Chiou S. S., Chen J. M., Wong M. L., Hsu W. L. 2013. Inhibition of enveloped viruses infectivity by curcumin. — PLoS One. 8(5): e62482. https://doi.org/10.1371/journal.pone.0062482
- Lai Y., Yan Y., Liao S., Li Y., Ye Y., Liu N., Zhao F., Xu P. 2020. 3D-quantitative structure-activity relationship and antiviral effects of curcumin derivatives as potent inhibitors of influenza H1N1 neuraminidase. — Arch. Pharm. Res. 43(5): 489–502. https://doi.org/10.1007/s12272-020-01230-5
- Nimmerjahn F., Dudziak D., Dirmeier U., Hobom G., Riedel A., Schlee M., Staudt L. M., Rosenwald A., Behrends U., Bornkamm G. W., Mautner J. 2004. Active NF-kappaB signalling is a prerequisite for influenza virus infection. — J. Gen. Virol. 85(8): 2347–2356. https://doi.org/10.1099/vir.0.79958-0
- Yang Q., Wu B., Shi Y., Du X., Fan M., Sun Z., Cui X., Huang C. 2012. Bioactivity-guided fractionation and analysis of compounds with anti-influenza virus activity from Gardenia jasminoides Ellis. — Arch. Pharm. Res. 35(1): 9–17. https://doi.org/10.1007/s12272-012-0101-3
- Zhang Y., Yao J., Qi X., Liu X., Lu X., Feng G. 2017. Geniposide demonstrates anti-inflammatory and antiviral activity against pandemic A/Jiangsu/1/2009 (H1N1) influenza virus infection in vitro and in vivo. — Antivir. Ther. 22(7): 599–611. https://doi.org/10.3851/IMP3152
- Guo S., Bao L., Li C., Sun J., Zhao R., Cui X. 2020. Antiviral activity of iridoid glycosides extracted from Fructus gardeniae against influenza A virus by PACT-dependent suppression of viral RNA replication. — Sci. Rep. 10(1): 1897. https://doi.org/10.1038/s41598-020-58443-3
- Zhou L., Bao L., Wang Y., Chen M., Zhang Y., Geng Z., Zhao R., Sun J., Bao Y., Shi Y., Yao R., Guo S., Cui X. 2021. An integrated analysis reveals geniposide extracted from Gardenia jasminoides J. Ellis regulates calcium signaling pathway essential for influenza A virus replication. — Front. Pharmacol. 12: 755796. https://doi.org/10.3389/fphar.2021.755796
- Hong E. H., Song J. H., Shim A., Lee B. R., Kwon B. E., Song H. H., Kim Y. J., Chang S. Y., Jeong H. G., Kim J. G., Seo S. U., Kim H., Kwon Y., Ko H. J. 2015. Coadministration of Hedera helix L. extract enabled mice to overcome insufficient protection against influenza A/PR/8 virus infection under suboptimal treatment with oseltamivir. — PLoS One. 10(6): e0131089. https://doi.org/10.1371/journal.pone.0131089
- Mehrbod P., Abdalla M. A., Fotouhi F., Heidarzadeh M., Aro A. O., Eloff J. N., McGaw L. J., Fasina F. O. 2018. Immunomodulatory properties of quercetin-3-O-α-L-rhamnopyranoside from Rapanea melanophloeos against influenza a virus. — BMC Complement. Altern. Med. Ther. 18(1): 184. https://doi.org/10.1186/s12906-018-2246-1
- Ding Y., Cao Z., Cao L., Ding G., Wang Z., Xiao W. 2017. Antiviral activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition of neuraminidase. — Sci. Rep. 7: 45723. https://doi.org/10.1038/srep45723
- Grienke U., Schmidtke M., Kirchmair J., Pfarr K., Wutzler P., Dürrwald R., Wolber G., Liedl K. R., Stuppner H., Rollinger J. M. 2010. Antiviral potential and molecular insight into neuraminidase inhibiting diarylheptanoids from Alpinia katsumadai. — J. Med. Chem. 53(2): 778–786. https://doi.org/10.1021/jm901440f
- Kwon H. J., Kim H. H., Yoon S. Y., Ryu Y. B., Chang J. S., Cho K. O., Rho M. C., Park S. J., Lee W. S. 2010. In vitro inhibitory activity of Alpinia katsumadai extracts against influenza virus infection and hemagglutination. — Virol. J. 7: 307. https://doi.org/10.1186/1743-422X-7-307
- Hong E. H., Song J. H., Kim S. R., Cho J., Jeong B., Yang H., Jeong J. H., Ahn J. H., Jeong H., Kim S. E., Chang S. Y., Ko H. J. 2020. Morin hydrate inhibits influenza virus entry into host cells and has anti-inflammatory effect in influenza-infected mice. — Immune Netw. 20(4): e32. https://doi.org/10.4110/in.2020.20.e32
- Li Y., Leung K. T., Yao F., Ooi L. S., Ooi V. E. 2006. Antiviral flavans from the leaves of Pithecellobium clypearia. — J. Nat. Prod. 69(5): 833–835. https://doi.org/10.1021/np050498o
- Kang J., Liu C., Wang H., Li B., Li C., Chen R., Liu A. 2014. Studies on the bioactive flavonoids isolated from Pithecellobium clypearia Benth. — Molecules. 19(4): 4479–4490. https://doi.org/10.3390/molecules19044479
- Li C., Xu L. J., Lian W. W., Pang X. C., Jia H., Liu A. L., Du G. H. 2018. Anti-influenza effect and action mechanisms of the chemical constituent gallocatechin-7-gallate from Pithecellobium clypearia Benth. — Acta Pharmacol. Sin. 39(12): 1913–1922. https://doi.org/10.1038/s41401-018-0030-x
- Jeong H. J., Ryu Y. B., Park S. J., Kim J. H., Kwon H. J., Kim J. H., Park K. H., Rho M. C., Lee W. S. 2009. Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. — Bioorg. Med. Chem. 17(19): 6816–6823. https://doi.org/10.1016/j.bmc.2009.08.036
- Langeder J., Grienke U., Döring K., Jafari M., Ehrhardt C., Schmidtke M., Rollinger J. M. 2021. High-performance countercurrent chromatography to access Rhodiola rosea influenza virus inhibiting constituents. — Planta Med. 87(10-11): 818–826. https://doi.org/10.1055/a-1228-8473
- Döring K., Langeder J., Duwe S., Tahir A., Grienke U., Rollinger J. M., Schmidtke M. 2022. Insights into the direct anti-influenza virus mode of action of Rhodiola rosea. — Phytomedicine. 96: 153895. https://doi.org/10.1016/j.phymed.2021.153895
- He Z., Lian W., Liu J., Zheng R., Xu H., Du G., Liu A. 2017. Isolation, structural characterization and neuraminidase inhibitory activities of polyphenolic constituents from Flos caryophylli. — Phytochem. Lett. 19: 160–167. https://doi.org/10.1016/j.phytol.2016.12.031
- Dai W. P., Li G., Li X., Hu Q. P., Liu J. X., Zhang F. X., Su Z. R., Lai X. P. 2014. The roots of Ilex asprella extract lessens acute respiratory distress syndrome in mice induced by influenza virus. — J. Ethnopharmacol. 155(3): 1575–1582. https://doi.org/10.1016/j.jep.2014.07.051
- Peng M. H., Dai W. P., Liu S. J., Yu L. W., Wu Y. N., Liu R., Chen X. L., Lai X. P., Li X., Zhao Z. X., Li G. 2016. Bioactive glycosides from the roots of Ilex asprella. — Pharm. Biol. 54(10): 2127–2134. https://doi.org/10.3109/13880209.2016.1146779
- Zhang W., Chen S. T., He Q. Y., Huang L. Q., Li X., Lai X. P., Zhan S. F., Huang H. T., Liu X. H., Wu J., Li G. 2019. Asprellcosides B of Ilex asprella Inhibits Influenza A Virus Infection by Blocking the Hemagglutinin-Mediated Membrane Fusion. — Front. Microbiol. 9: 3325. https://doi.org/10.3389/fmicb.2018.03325
- Dao T. T., Dang T. T., Nguyen P. H., Kim E., Thuong P. T., Oh W. K. 2012. Xanthones from Polygala karensium inhibit neuraminidases from influenza A viruses. — Bioorg. Med. Chem. Lett. 22(11): 3688–3692. https://doi.org/10.1016/j.bmcl.2012.04.028
- Zhao T., Li C., Wang S., Song X. 2022. Green tea (Camellia sinensis): a review of its phytochemistry, pharmacology, and toxicology. — Molecules. 27(12): 3909. https://doi.org/10.3390/molecules27123909
- Kuzuhara T., Iwai Y., Takahashi H., Hatakeyama D., Echigo N. 2009. Green tea catechins inhibit the endonuclease activity of influenza A virus RNA polymerase. — PLoS Curr. 1: RRN1052. PMID: 20025206. PMCID: PMC2762814
- Song J. M., Lee K. H., Seong B. L. 2005. Antiviral effect of catechins in green tea on influenza virus. — Antiviral Res. 68(2): 66–74. https://doi.org/10.1016/j.antiviral.2005.06.010
- Kim M., Kim S. Y., Lee H. W., Shin J. S., Kim P., Jung Y. S., Jeong H. S., Hyun J. K., Lee C. K. 2013. Inhibition of influenza virus internalization by (–)-epigallocatechin-3-gallate. — Antiviral Res. 100(2): 460–472. https://doi.org/10.1016/j.antiviral.2013.08.002
- Ling J. X., Wei F., Li N., Li J. L., Chen L. J., Liu Y. Y., Luo F., Xiong H. R., Hou W., Yang Z. Q. 2012. Amelioration of influenza virus-induced reactive oxygen species formation by epigallocatechin gallate derived from green tea. — Acta Pharmacol. Sin. 33(12): 1533–1541. https://doi.org/10.1038/aps.2012.80
- Zhu J., Ou L., Zhou Y., Yang Z., Bie M. 2020. (–)-Epigallocatechin-3-gallate induces interferon-λ2 expression to anti-influenza A virus in human bronchial epithelial cells (BEAS-2B) through p38 MAPK signaling pathway. — J. Thorac. Dis. 12(3): 989–997. https://dx.doi.org/10.21037/jtd.2020.03.20
- Xu M. J., Liu B. J., Wang C. L., Wang G. H., Tian Y., Wang S. H., Li J., Li P. Y., Zhang R. H., Wei D., Tian S. F., Xu T. 2017. Epigallocatechin-3-gallate inhibits TLR4 signaling through the 67-kDa laminin receptor and effectively alleviates acute lung injury induced by H9N2 swine influenza virus. — Int. Immunopharmacol. 52: 24–33. https://doi.org/10.1016/j.intimp.2017.08.023
- Sriwilaijaroen N., Fukumoto S., Kumagai K., Hiramatsu H., Odagiri T., Tashiro M., Suzuki Y. 2012. Antiviral effects of Psidium guajava Linn. (guava) tea on the growth of clinical isolated H1N1 viruses: its role in viral hemagglutination and neuraminidase inhibition. — Antiviral Res. 94(2): 139–146. https://doi.org/10.1016/j.antiviral.2012.02.013
- Khalil H., Abd El-Maksoud A. I., Roshdey T., El-Masry S. 2019. Guava flavonoid glycosides prevent influenza A virus infection via rescue of P53 activity. — J. Med. Virol. 91(1): 45–55. https://doi.org/10.1002/jmv.25295
- Wirotesangthong M., Nagai T., Yamada H., Amnuoypol S., Mungmee C. 2009. Effects of Clinacanthus siamensis leaf extract on influenza virus infection. — Microbiol. Immunol. 53(2): 66–74. https://doi.org/10.1111/j.1348-0421.2008.00095.x
- Pleschka S., Stein M., Schoop R., Hudson J. B. 2009. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian influenza virus (H5N1, H7N7) and swine-origin H1N1 (S-OIV). — Virol. J. 6: 197. https://doi.org/10.1186/1743-422X-6-197
- Michaelis M., Doerr H. W., Cinatl J. Jr. 2011. Investigation of the influence of EPs® 7630, a herbal drug preparation from Pelargonium sidoides, on replication of a broad panel of respiratory viruses. — Phytomedicine. 18(5): 384–386. https://doi.org/10.1016/j.phymed.2010.09.008
- Theisen L. L., Muller C. P. 2012. EPs® 7630 (Umckaloabo®), an extract from Pelargonium sidoides roots, exerts anti-influenza virus activity in vitro and in vivo. — Antiviral Res. 94(2): 147–156. https://doi.org/10.1016/j.antiviral.2012.03.006
- Heo Y., Cho Y., Ju K. S., Cho H., Park K. H., Choi H., Yoon J. K., Moon C., Kim Y. B. 2018. Antiviral activity of Poncirus trifoliata seed extract against oseltamivir-resistant influenza virus. — J. Microbiol. 56(8): 586–592. https://doi.org/10.1007/s12275-018-8222-0
- Nguyen P. H., Na M., Dao T. T., Ndinteh D. T., Mbafor J. T., Park J., Cheong H., Oh W. K. 2010. New stilbenoid with inhibitory activity on viral neuraminidases from Erythrina addisoniae. — Bioorg. Med. Chem. Lett. 20(22): 6430–64344. https://doi.org/10.1016/j.bmcl.2010.09.077
- Tan J., Qiao Z., Meng M., Zhang F., Kwan H. Y., Zhong K., Yang C., Wang Y., Zhang M., Liu Z., Su T. 2022. Centipeda minima: An update on its phytochemistry, pharmacology and safety. — J. Ethnopharmacol. 292: 115027. https://doi.org/10.1016/j.jep.2022.115027
- Zhang X., He J., Huang W., Huang H., Zhang Z., Wang J., Yang L., Wang G., Wang Y., Li Y. 2018. Antiviral activity of the sesquiterpene lactones from Centipeda minima against influenza A virus in vitro. — Nat. Prod. Commun. 13(2): 115–119. https://doi.org/10.1177/1934578X1801300201
- Zhang X., Xia Y., Yang L., He J., Li Y., Xia C. 2019. Brevilin A, a sesquiterpene lactone, inhibits the replication of influenza A virus in vitro and in vivo. — Viruses. 11(9): 835. https://doi.org/10.3390/v11090835
- Gansukh E., Kazibwe Z., Pandurangan M., Judy G., Kim D. H. 2016. Probing the impact of quercetin-7-O-glucoside on influenza virus replication influence. — Phytomedicine. 23(9): 958–967. https://doi.org/10.1016/j.phymed.2016.06.001
- Kim D. H., Park G. S., Nile A. S., Kwon Y. D., Enkhtaivan G., Nile S. H. 2019. Utilization of Dianthus superbus L. and its bioactive compounds for antioxidant, anti-influenza and toxicological effects. — Food. Chem. Toxicol. 125: 313–321. https://doi.org/10.1016/j.fct.2019.01.013
- Nile S. H., Kim D. H., Nile A., Park G. S., Gansukh E., Kai G. 2020. Probing the effect of quercetin 3-glucoside from Dianthus superbus L. against influenza virus infection in vitro and in silico biochemical and toxicological screening. — Food. Chem. Toxicol. 135: 110985. https://doi.org/10.1016/j.fct.2019.110985
- Vimalanathan S., Hudson J. 2014. Anti-influenza virus activity of essential oils and vapors. — Am. J. Essent. Oil Nat. Prod. 2(1): 47–53. https://www.essencejournal.com/archives/2014/2/1/A/8
Дополнительные файлы
