Asymptotics of the Localized Bessel Beams and Lagrangian Manifolds

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The Bessel beam-type asymptotic solutions of the three-dimensional Helmholtz equation, i.e., the solutions that have maxima in the vicinity of the -axis and are described by Bessel functions in the planes normal to it, are discussed. Since the Bessel functions slowly decrease at infinity, the energy of such solutions appears unlimited. Approaches to localizing such solutions by representing them in the form of the Maslov canonical operator on proper Lagrangian manifolds with simple caustics in the form of degenerate and nondegenerate folds are described. Efficient formulas for these solutions in the form of Bessel and Airy functions of a complex argument are obtained.

作者简介

S. Dobrokhotov

Ilshinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Email: s.dobrokhotov@gmail.com
Moscow, 119526 Russia

V. Nazaikinskii

Ilshinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Email: s.dobrokhotov@gmail.com
Moscow, 119526 Russia

A. Tsvetkova

Ilshinsky Institute for Problems in Mechanics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: s.dobrokhotov@gmail.com
Moscow, 119526 Russia

参考

  1. Арнольд В.И., Варченко А.Н., Гусейн-Заде С.М. Особенности дифференцируемых отображений. М.: Наука, 1982.
  2. Крюковский А.С., Лукин Д.С., Палкин Е.А., Растягаев Д.В. // Труды МФТИ. 2009. Т. 1. № 2. С. 54.
  3. Крюковский А.С. Равномерномерная асимптотическая теория краевых и угловых волновых катастроф. М.: РосНОУ, 2013.
  4. Bova J.I., Lukin D.S., Kryukovskii A.S. // Russ. J. Math. Phys. 2020. V. 27. № 4. P. 446.
  5. Маслов В.П. Теория возмущений и асимптотические методы. М.: Из-во МГУ, 1965.
  6. Маслов В.П., Федорюк М.В. Квазиклассическое приближение для уравнений квантовой механики. М.: Наука, 1967.
  7. Доброхотов С.Ю., Назайкинский В.Е., Шафаревич А.И. // Изв. РАН. Сер. матем. 2017. Т. 81. № 2. С. 53.
  8. Аникин А.Ю., Доброхотов С.Ю., Назайкинский В.Е., Цветкова А.В. // Теорет. и матем. физика. 2019. Т. 201. № 3. P. 382.
  9. Доброхотов С.Ю., Миненков Д.С., Назайкинский В.Е. // Теорет. и матем. физика. 2021. Т. 208. № 2. С. 196.
  10. Доброхотов С.Ю., Макракис Г., Назайкинский В.Е. // Теорет. и матем физика. 2014. Т. 180. № 2. С. 162.
  11. Аникин А.Ю., Доброхотов С.Ю., Назайкинский В.Е. // Матем. заметки. 2018. Т. 104. № 4. С. 483.
  12. Маслов В.П. Комплексный метод ВКБ в нелиненых уравнениях. М.: Наука, 1977.
  13. Салех Б., Тейх М. Оптика и фотоника. Принципы и применения. Долгопрудный: ИД Интеллект, 2012. Т. 1.
  14. Киселев А.П. // Оптика и спектроскопия. 2004. Т. 96. № 4. С. 533.
  15. Plachenov A.B., Chamorro-Posada P., Kiselev P. // Phys. Rev. A. 2020. V. 102. № 2. P. 023533.
  16. Frenzen C.I., Wong R. // Siam J. Math. Anal. 1988. V. 19. № 5. P. 1232.
  17. Dobrokhotov S.Yu., Tsvetkova A.V. // Rus. J. Math. Phys. 2021. V. 28. № 2. P. 198.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (41KB)
3.

下载 (578KB)
4.

下载 (482KB)
5.

下载 (52KB)
6.

下载 (333KB)
7.

下载 (52KB)

版权所有 © С.Ю. Доброхотов, В.Е. Назайкинский, А.В. Цветкова, 2023