Influence of iron(III) hydroxo forms and boric acid on the state of ruthenium-106 in aqueous solutions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The work examines the state of 106Ru in solutions simulating technological media and liquid radioactive waste from nuclear power plants with a VVER reactor, as well as the influence of the physicochemical state of the radionuclide on the efficiency of ion exchange and ultrafiltration treatment methods. During the study, the regions of existence of ionic and nonionic states of the radionuclide were studied in solutions of complex composition. In addition, the size distribution of particles containing 106Ru were established. The formation of complex compounds of 106Ru with polyborate ions in the neutral and slightly alkaline pH region has been shown, which leads to a decrease in the efficiency of decontamination of liquid radioactive waste from ruthenium radionuclides.

全文:

受限制的访问

作者简介

V. Karankova

Joint Institute for Power and Nuclear Research—Sosny, National Academy of Sciences of Belarus

编辑信件的主要联系方式.
Email: korenkova_olya@mail.ru
白俄罗斯, Minsk 223063

A. Radkevich

Joint Institute for Power and Nuclear Research—Sosny, National Academy of Sciences of Belarus

Email: korenkova_olya@mail.ru
白俄罗斯, Minsk 223063

V. Torapava

Joint Institute for Power and Nuclear Research—Sosny, National Academy of Sciences of Belarus

Email: korenkova_olya@mail.ru
白俄罗斯, Minsk 223063

A. Dashouk

Joint Institute for Power and Nuclear Research—Sosny, National Academy of Sciences of Belarus

Email: korenkova_olya@mail.ru
白俄罗斯, Minsk 223063

参考

  1. Чиж В.А., Карницкий Н.Б., Денисов С.М., Нерезько А.В. Водоподготовка и водно-химические режимы ТЭС и АЭС. Минск: БНТУ, 2015. 107 с.
  2. Тяпков В.Ф., Шарафутдинов Р.Б. // Вестн. Госатомнадзора России. 2003. № 4. С. 8.
  3. Мальцева Т.В., Зинченко Ю.А., Добровольская И.Ю., Архипенко А.В. // Ядерн. и радиац. безопасность. 2012. № 4 (56). С. 37.
  4. Кравченко В.В., Цыганкова С.Д. // Энергетика. Изв. высших учебных заведений и энергетических объединений СНГ. 2020. Т. 63. № 1. С. 89.
  5. Крицкий В.Г., Березина И.Г., Родионов Ю.А., Гаврилов А.В. // Теплоэнергетика. 2011. № 7. С. 7.
  6. Гусев Б.А., Семенов В.Г., Ефимов А.А., Панчук В.В. // Вестн. СПбГУ. 2012. Сер. 4. Вып. 4. С. 110.
  7. Кулагина Т.А., Шеленкова В.В. // Журн. Сиб. фед. ун-та. Техника и технологии. 2017. T. 10. Вып. 3. С. 352.
  8. Zhang W., Liu T., Xu J. Preparation and characterization of 10B boric acid with high purity for nuclear industry. URL: https://springerplus.springeropen.com/articles/10.1186/s40064-016-2310-6. Date of access: 05.04.2024.
  9. Graff A., Barrez E., Baranek P., Bachet M., Benezeth P. // J. Solution Chem. 2017. Vol. 46. P. 25.
  10. Raynaud T., Bachet M., Benezeth P. Graff A. Zinc(II)–boron(III) aqueous complex formation between 25 and 70°C. https://doi.org/10.1007/s10953-023-01357-1. Date of access: 05.04.2024.
  11. Буслаева Т.М., Фесик Е.В., Кхан Н.А. // Тонкие хим. технологии. 2019. Вып. 14(6). С. 22.
  12. Zuba I., Zuba M., Piotrowski M., Pawlukojc A. // Appl. Radiat. Isot. 2020. Vol. 162. ID 109176.
  13. Rard J.A. Thermodynamic databases for multivalent elements: an example for ruthenium. URL: https://digital.library.unt.edu/ark:/67531/metadc1103533/m2/1/high_res_d/5752074.pdf. Date of access: 28.03.2024.
  14. Schulz W.W., Metcalf S.G., Barney G.S. Radiochemistry of Elements: Radiochemistry of Ruthenium. Oak Ridge, 1984. 197 p.
  15. Kajan I. Transport and containment chemistry of ruthenium under severe accident conditions in a nuclear power plant: PhD Thesis. Gothenburg: Chalmers Univ. of Technology, 2016. 95 p.
  16. Karkela T., Ver N., Haste T., Davidovich N., Pyykonen J., Cantrel L. // Ann. Nucl. Energy. 2014. Vol. 74. P. 173.
  17. Johal S.K., Boxall C., Gregson C., Steele C. // ECS Trans. 2015. Vol. 66. N 21. P. 31.
  18. Устинов О.А., Якунин С.А., Воскресенская Ю.А. // Радиохимия. 2021. Т. 63. № 3. С. 213.
  19. Schafer A.I., Mauch R., Waite T.D., Fane A.G. // Environ. Sci. Technol. 2002. Vol. 36. N 12. P. 2572.
  20. Benes P., Majer V. Trace Chemistry of Aqueous Solutions. General Chemistry and Radiochemistry. Prague: Academia, 1980. P. 83.
  21. Коренькова О. Б., Радкевич А.В., Вороник Н.И. // Изв. НАН Беларуси. Сер. хим. наук. 2021. Т. 57. № 3. С. 331.
  22. Давыдов Ю.П. Формы нахождения металл-ионов (радионуклидов) в растворах. Минск: Беларуская навука, 2011. 301 с.
  23. Перевощикова Н.Б., Корнев В.И. // Вестн. Удмурт. ун-та. 2006. № 8. С. 189.
  24. Karankova V., Radkevich A., Varonik N. // J. Radioanal. Nucl. Chem. 2023. Vol. 332. P. 4561.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Distribution coefficient of the radionuclide 106Ru on the cation exchanger (1) and anion exchanger (2) in the presence of Fe(III) hydroxoforms depending on the pH of the solution.

下载 (64KB)
3. Fig. 2. Distribution coefficient of the radionuclide 106Ru on the cation exchanger (1) and anion exchanger (2) depending on the pH value of the solution in the presence of Fe(III) hydroxoforms and boric acid in a concentration, g/dm3: a – 5, b – 10, c – 16.

下载 (142KB)
4. Fig. 3. Dependence of 106Ru retention by ultrafiltration membranes with a cutoff value of 1 and 10 kDa on the pH of the solution in the presence of Fe(III) hydroxoforms and boric acid in a concentration, g/dm3: a – 5, b – 10, c – 16.

下载 (154KB)
5. Fig. 4. Retention of 106Ru by an ultrafiltration membrane with a cutoff value of 100 kDa depending on the pH of the solution in the presence of Fe(III) hydroxoforms and boric acid in a concentration, g/dm3: 1 – 5, 2 – 10, 3 – 16.

下载 (95KB)
6. Fig. 5. Dependence of the degree of sedimentation of particles containing 106Ru during centrifugation on the pH of the solution in the presence of 1 mg/dm3 Fe(III) and boric acid in a concentration, g/dm3: 1 – 0, 2 – 5, 3 – 10, 4 – 16.

下载 (94KB)
7. Fig. 6. Regions of existence of different states of 106Ru in solutions in the presence of Fe(III) hydroxoforms depending on the concentration of boric acid.

下载 (121KB)

版权所有 © Russian Academy of Sciences, 2024