Effect of ionic liquid on the extraction of lanthanides(III) from nitric acid solutions with phosphoryl-containing podands

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effect of the ionic liquid, 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, on the extraction of lanthanides(III) from nitric acid solutions with phosphoryl-containing podands (2-(2-diphenylphosphoryl)-4-ethylphenoxy)methyl)diphenylphosphine oxide (1), (2-(2-diphenylphosphoryl)-4-ethylphenoxy)ethyl)diphenylphosphine oxide (2), and 2-[2-(diphenylphosphoryl)-4-ethylphenoxy]-N, N-dioctylacetamide (3) was studied. The stoichiometry of the extracted complexes was determined. The efficiency of extraction of lanthanides(III) with solutions of compounds 13 in dichloroethane from nitric acid solutions increases in the order 3 < 2 < 1. It has been established that, when replacing dichloroethane with an ionic liquid as a diluent, the extraction efficiency increases. The magnitude of this effect decreases in the series of compounds 3 > 2 > 1. In the case of compound 1, the replacement of dichloroethane with an ionic liquid as a solvent is accompanied by a decrease in the extraction of lanthanides(III) at [HNO3] > 1.5 M.

Texto integral

Acesso é fechado

Sobre autores

A. Turanov

Ossipyan Institute of Solid State Physics, Russian Academy of Sciences

Email: mager1988@gmail.com
Rússia, Chernogolovka, Moscow oblast, 142432

V. Karandashev

Institute of Microelectronics Technology and High Pure Materials, Russian Academy of Sciences

Email: mager1988@gmail.com
Rússia, Chernogolovka, Moscow oblast, 142432

V. Baulin

Institute of Physiologically Active Substances of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: mager1988@gmail.com
Rússia, Chernogolovka, Moscow oblast, 142432

D. Baulin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: mager1988@gmail.com
Rússia, 119991, Moscow, 119991

Bibliografia

  1. Myasoedov B.F., Kalmykov S.N., Kulyako Yu.M., Vinokurov S.E. // Geochem. Int. 2016. Vol. 54. N 13. P. 1156. https://doi.org/10.1134/S0016702916130115
  2. Аляпышев М. Ю., Бабаин В. А., Устынюк Ю. А. // Успехи химии. 2016. Т. 85. N 9. С. 943; Alyapyshev M.Yu., Babain V.A., Ustynyuk Yu.A. // Russ. Chem. Rev. 2016. Vol. 85. N 9. P. 943. https://doi.org/10.1070/RCR4588
  3. Leoncini A., Huskens J., Verboom W. // Chem. Soc. Rev. 2017. Vol. 46. P. 7229. doi: 10.1039/C7CS00574A
  4. Wilson A. M., Bailey P. J., Tasker P. A. // Chem. Soc. Rev. 2014. Vol. 43. P. 123.
  5. Werner E. J., Biros S. M. // Org. Chem. Front. 2019. Vol. 6. P. 2067.
  6. Bhattacharyya A., Mohapatra P.K. // Radiochim. Acta. 2019. V. 107. P. 931.
  7. Розен А. М., Крупнов Б. В. // Успехи химии. 1996. Т. 65. N 11. С. 1052–1079; Rozen A.M., Krupnov B.V. // Russ. Chem. Rev. 1996. Vol. 65. N 11. P. 973. http://dx.doi.org/10.1070/RC1996v065n11ABEH000241
  8. Horwitz E.P., Martin K.A., Diamond H., Kaplan L. // Solvent Extr. Ion Exch. 1986. Vol. 4. N 3. P. 449. https://doi.org/10.1080/07366298608917877
  9. Чмутова М.К., Литвина М.Н., Прибылова Г.А. Иванова Л.А., Смирнов И.В., Шадрин А.Ю., Мясоедов Б.Ф. // Радиохимия. 1999. Т. 41. № 4. С. 331. Chmutova M.K., Litvina M.N., Pribylova G.A., Ivanova L A., Smirnov I.V., Shadrin A.Yu, Myasoedov B.F. // Radiochemistry. 1999. Vol. 41. № 4. P. 349.
  10. Turanov A.N., Karandashev V.K., Baulin V.E., Yarkevich A.N., Safronova Z.V. // Solvent Extr. Ion Exch. 2009. Vol. 27. P. 551. https://doi.org/10.1080/07366290903044683
  11. Демин С.В., Жилов В.И., Нефедов С.Е. Баулин В.Е., Цивадзе А.Ю. // ЖНХ. 2012. Т. 57. № 6. С. 970; Demin S.V., Nefedov S.E., Zhilov V.I. Baulin V. E., Tsivadze A. Y. // Russ. J. Inorg. Chem. 2012. Vol. 57. N 6. P. 897. https://doi.org/10.1134/S0036023612060095
  12. Туранов А.Н., Карандашев В.К., Баулин Д.В., Баулин В.Е. // ЖОХ. 2020. Т. 90. № 6. С. 919.
  13. Kolarik Z. // Solvent Extr. Ion Exch. 2013. Vol. 31. P. 24. https://doi.org/10.1080/07366299.2012.700589
  14. Riano S., Foltova S.S., Binnemans K. // RSC Adv. 2020. Vol. 10. P. 307. https://doi.org/10.1039/c9ra08996
  15. Iqbal M., Waheed K., Rahat S.B., Mehmood T., Lee M.S. // J. Radioanal. Nucl. Chem. 2020. Vol. 325. P. 1. https://doi.org/10.1007/s10967-020-07199-1
  16. Atanassova M. // J. Mol. Liq. 2021. Vol. 343. ID 117530. https://doi.org/10.1016/j.molliq.2021.117530
  17. Белова В.В. // Радиохимия. 2021. Т. 63. № 1. С. 3; Belova V.V. // Radiochemistry. 2021. V. 63. № 1. Р. 1. https://doi.org/10.1134/S106636222101001X
  18. Sun T., Zhang Y., Wu Q., Chen J., Xia L., Xu C. // Solvent Extr. Ion Exch. 2017. Vol. 35. P. 408. https://doi.org/10.1080/07366299.2017.1379142
  19. Туранов А.Н., Карандашев В.К., Яркевич А.Н. // Радиохимия. 2022. Т. 64. № 2. С. 164; Turanov A.N., Karandashev V.K., Yarkevich A.N. // Radiochemistry. 2022. Vol. 64. № 2. P. 163. https://doi.org/10.1134/S1066362222020072
  20. Turanov A.N., Karandashev V.K., Sharova E.V., Artyushin O.I., Kostikova G.V., Fedoseev A.M. // Radiochim. Acta. 2023. Vol. 111. P. 601.
  21. Pribilova G., Smirnov I., Novikov A. // J. Radioanal. Nucl. Chem. 2012. Vol. 295. P. 83.
  22. Туранов А.Н., Карандашев В.К., Баулин В.Е., Калашникова И.П., Кириллов Е.В., Кириллов С.В., Рычков В.Н., Цивадзе А.Ю. // ЖНХ. 2016. Т. 61. № 3. С. 396.
  23. Bonhote P., Dias A.P., Papageorgiou N., Kalyanasundaram K., Grätzel M. // Inorg. Chem. 1996. Vol. 35. P. 1168. https://doi.org/10.1021/ic951325x
  24. Nash K.L., Jensen M.P. // Sep. Sci. Technol. 2001. Vol. 36. N 5–6. P. 1257. https://doi.org/10.1081/SS-100103649
  25. Binnemans K. // Chem. Rev. 2007. Vol. 107. P. 2592.
  26. Gaillard C., Boltoeva M., Billard I., Georg S., Mazan V., Ouadi A., Ternova D., Henning C. // ChemPhysChem. 2015. Vol. 16. P. 2653. https://doi.org/ 10.1002/cphc.201500283

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Additional materials
Baixar (151KB)
3. Formula

Baixar (46KB)
4. Fig. 1. Dependence of the distribution coefficients of Ln(III) on the concentration of HNO3 in the aqueous phase during extraction with 0.01 mol/l solutions of compound 1 in dichloroethane.

Baixar (90KB)
5. Fig. 2. Dependence of the distribution coefficients of Eu(III) on the concentration of HNO3 in the aqueous phase during extraction with 0.05 mol/L solutions of compounds 1 (1, 3), 2 (4, 5) and 3 (2, 6) in dichloroethane (1, 5, 6) and in C4mimTf2N (2–4).

Baixar (82KB)
6. Fig. 3. Distribution coefficients of Ln(III) during extraction from a 3 mol/L HNO3 solution with 0.05 mol/L solutions of compounds 1(1, 2), 2 (4, 5), and 3 (3, 6) in dichloroethane (1, 5, 6) and in C4mimTf2N (2–4).

Baixar (87KB)
7. Fig. 4. Distribution coefficients of Ln(III) during extraction from a 0.003 mol/L LiTf2N solution with 0.002 mol/L solutions of compounds 1–3 in dichloroethane.

Baixar (76KB)
8. Fig. 5. Distribution coefficients of Ln(III) during extraction from a 0.01 mol/L HNO3 solution with 0.01 mol/L solutions of compounds 1–3 in dichloroethane containing 0.05 mol/L C4mimTf2N.

Baixar (70KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024