Kinetic relationships of 90Sr sorption from aqueous solutions by carbonate-containing zirconium hydroxide Termoxid-3K

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The kinetic relationships of the 90Sr sorption from fresh water by Termoxid-3K inorganic sorbent were studied. The influence of the solution stirring rate, strontium concentration, and temperature on the sorption rate constant, diffusion coefficients, and kinetic regime was investigated, and the experimental results obtained were modeled using models of diffusion and chemical kinetics. The strontium sorption onto T-3K sorbent has a two-stage character and proceeds in the internal diffusion mode with a limiting contribution of the chemisorption process in the first stage. The diffusion coefficients of strontium were 10–12–10–13 m2/s, and the activation energy in the first stage of sorption was 93.3 and at the second stage, 23.8 kJ/mol.

Full Text

Restricted Access

About the authors

N. V. Belokonova

Yeltsin Ural Federal University

Email: av.voronina@mail.ru
Russian Federation, ul. Mira 19, Yekaterinburg, 620002

A. V. Voronina

Yeltsin Ural Federal University

Author for correspondence.
Email: av.voronina@mail.ru
Russian Federation, ul. Mira 19, Yekaterinburg, 620002

References

  1. Yi I.-G., Kang J.-K., Lee S.-C., Lee C.-G., Kim S.-B. // Micropor. Mesopor. Mater. 2019. Vol. 279. P. 45–52.
  2. Bochkarev G.R., Pushkareva G.I. // J. Min. Sci. 2009. Vol. 45. P. 290–294.
  3. Başçetin E., Atun G. // J. Chem. Eng. Data. 2010. Vol. 55. N 2. P. 783–788.
  4. Boyd G.E., Adamson A.W., Myers L.S., Jr. // J. Am. Chem. Soc. 1947. Vol. 69. N 11. P. 2836–2848.
  5. Merceille A., Weinzaepfel E., Barré Y., Grandjean A. // Sep. Purif. Technol. 2012. Vol. 96. P. 81–88.
  6. Missana T., Garcia-Gutierrez M., Alonso U. // Phys. Chem. Earth. Parts A/B/C. 2008. Vol. 33. Suppl. 1. P. S156–S162.
  7. Abdel-Karim A.M., Zaki A.A., Elwan W., El-Naggar M.R., Gouda M.M. // Appl. Clay Sci. 2016. Vol. 132–133. P. 391–401.
  8. Kamel N.H.M. // J. Environ. Radioact. 2010. Vol. 101. N 4. P. 297–303.
  9. Ma B., Oh S., Shin W.S., Choi S.-J. // Desalination. 2011. Vol. 276. P. 336–346.
  10. Chen Y., Wang J. // Nucl. Eng. Des. 2012. Vol. 242. P. 445–451.
  11. Недобух Т.А., Захарова Т.С., Воронина А.В., Кутергин А.С., Семенищев В.С. // Сорбционные и хроматографические процессы. 2022. Т. 22. № 4. С. 473–484.
  12. Voronina A.V., Bajtimirova M.O., Semenishchev V.S. // J. Radioanal. Nucl. Chem. 2022. Vol. 331. N 2. P. 913–920.
  13. Fei C., Linlin Y., Fei G., Xiao G., Qiang X., Zhen Z., Feng Z., Jingguang F. // Radiat. Med. Prot. 2022. Vol. 3. N 2. P. 96–100.
  14. Bezhin N.A., Dovhyi I.I., Milyutin V.V., Nekrasova N.A., Tokar’ E.A., Tananaev I.G. // Radiochemistry. 2019. Vol. 61. P. 700–706.
  15. Mironyuk I., Mykytyn I., Vasylyeva H., Savka K. // J. Mol. Liq. 2020. Vol. 316. ID 113840.
  16. Kononenko O.A., Milyutin V.V., Kaptakov V.O., Makarenkov V.I., Kozlitin E.A. // J. Radioanal. Nucl. Chem. 2024. Vol. 333. P. 4889–4897.
  17. Singh O.V., Tandon S.N. // Int. J. Appl. Radiat. Isot. 1977. Vol. 28. N 8. P. 701–704.
  18. Matskevich A.I., Tokar E.A., Sokolnitskaya T.A., Markin N.S., Priimak I.D., Egorin A.M. // J. Radioanal. Nucl. Chem. 2022. Vol. 331. P. 5691–5699.
  19. Shashkova I., Kitikova N., Sycheva O., Dzikaya A., Nurbekova M., Hosseini-Bandegharaei A., Ivanets A. // Ceram. Int. 2024. Vol. 50. N 13. Part A. P. 22836–22847.
  20. Mudruk N., Maslova M. // Int. J. Mol. Sci. 2023. Vol. 24. N 9. ID 7903.
  21. Matel L., Dulanska S., Silikova V. // XXXIX Days of Radiation Protection. Proc. Presentations and Posters. Bratislava, Nov. 6–10, 2017. P. 578.
  22. Tel H., Altaş, Y., Eral M., Sert, Ş., Çetinkaya B., İnan S. // Chem. Eng. J. 2010. Vol. 161. P. 151–160.
  23. Belokonova N.V., Tarasovskikh T.V., Voronina A.V. // AIP Conf. Proc. 2022. Vol. 2466. ID 050043. https://doi.org/10.1063/5.0088731
  24. Voronina A.V., Noskova A.Yu., Semenishchev V.S., Gupta D.K. // J. Environ. Radioact. 2020. Vol. 217. ID 106210.
  25. Никифоров А.Ф., Юрченко В.В. // Сорбционные и хроматографические процессы. 2010. Т. 10. № 5. С. 676–684.
  26. Mironyuk I., Tatarchuk T., Vasylyeva H., Naushad Mu., Mykytyn I. // J. Environ. Chem. Eng. 2019. Vol. 7. N 6. ID 103430.
  27. Li D., Zhang B., Xuan F. // J. Mol. Liq. 2015. Vol. 209. P. 508–514.
  28. Ripon R.I., Begum Z.A., Ahmmad B., Hirose F., Takagai Y., Rahman I.M.M. // J. Environ. Chem. Eng. 2024. Vol. 12. N 5. ID 113984.
  29. Shashkova I.L., Ivanets A.I., Kitikova N.V., Sillanpää M. // J. Taiwan Inst. Chem. Eng. 2017. Vol. 80. P. 787–796.
  30. Maslova M.V., Ivanenko V.I., Gerasimova L.G. // Russ. J. Phys. Chem. A. 2019. Vol. 93. N 7. P. 1245–1251.
  31. Voronina A.V., Belokonova N.V. // Radiochemistry. 2023. Vol. 65. N 4. P. 473–484.
  32. Voronina A.V., Belokonova N.V., Suetina A.K., Semenishchev V.S. // J. Radioanal. Nucl. Chem. 2022. Vol. 331. P. 4021–4030.
  33. Воронина А.В., Белоконова Н.В., Суетина А.К. Патент RU 2796325 C1. Опубл. 22.05.2023.
  34. Кокотов Ю.А., Пасечник В.А. Равновесие и кинетика ионного обмена. Л.: Химия, 1970. 336 с.
  35. Гельферих Ф. Иониты. М.: Изд-во иностр. лит., 1962. 490 с.
  36. Киекпаев М.А., Строева Э.В. // Вестн. ОГУ. 2006. № 5. С. 35–39.
  37. Эмануэль Н.М., Кнорре Д.Г. Курс химической кинетики: учебник для химических факультетов. М.: ВШ, 1974. 3-е изд. 400 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Kinetic dependences of strontium sorption by sorbent T-3K on the concentration of strontium in the solution, stirring speed 180 rpm.

Download (86KB)
3. Fig. 2. Kinetic dependences of strontium sorption by sorbent T-3K on the stirring speed, strontium concentration in solution 0.1 mg/l.

Download (75KB)
4. Fig. 3. Kinetic dependences in the coordinates of linear equations, υ = 900 rpm: a – pseudo-first-order models, b – pseudo-second-order models, c – Elovich models.

Download (235KB)
5. Fig. 4. Kinetic dependences of strontium sorption by sorbent T-3K at different temperatures, strontium concentration 1 mg/l, υ = 180 rpm.

Download (66KB)
6. Fig. 5. Dependence of the sorption rate constant on temperature.

Download (66KB)

Copyright (c) 2025 Russian Academy of Sciences