Thermal stability of dibenzo-21-crown-7 and its solution in 1,2-dichloroethane in contact with nitrogen dioxide

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The thermal stability of dibenzo-21-crown-7 (DB21C7) and its solution in 1,2-dichloroethane (DCE) after contact with nitrogen dioxide, which is a product of nitric acid degradation, was studied. It is shown that exothermic processes accompanied by the release of gaseous products are observed in inert and oxidizing atmosphere. The compounds formed after contact with nitrogen dioxide were determined by gas chromatography–mass spectrometry. Differences in gaseous products in the temperature range of 300°С were noted for the initial crown ether and for DB21С7 and its solution in DСE after contact with NO2.

Full Text

Restricted Access

About the authors

A. M. Koscheeva

Scientific and Engineering Centre for Nuclear and Radiation Safety

Author for correspondence.
Email: koscheeva@secnrs.ru
Russian Federation, Moscow, 107140

K. V. Shelamov

Scientific and Engineering Centre for Nuclear and Radiation Safety

Email: koscheeva@secnrs.ru
Russian Federation, Moscow, 107140

A. V. Rodin

Scientific and Engineering Centre for Nuclear and Radiation Safety

Email: koscheeva@secnrs.ru
Russian Federation, Moscow, 107140

A. V. Ananiev

Bochvar High-Tech Research Institute of Inorganic Materials

Email: AlVlAnanyev@bochvar.ru
Russian Federation, Moscow, 123060

References

  1. Кащеев В.А., Логунов М.В., Шадрин А.Ю., Рыкунова А.А., Шмидт О.В. // Радиоактивные отходы. 2022. № 2 (19). С. 6 – 16. https://doi.org/10.25283/2587-9707-2022-2-6-16
  2. Махлярчук В.В., Затонский С.В. // Успехи химии. 1992. Т. 61. № 5. С. 883–909. https://doi.org/10.1070/rc1992v061n05abeh000958
  3. Назин Е.Р., Зачиняев Г.М. Пожаровзрывобезопасность технологических радиохимических процессов. М.: НТЦ ЯРБ, 2009. 196 с.
  4. Нестеров С.В. // Успехи химии. 2000. Т. 69. № 9. С. 840–855. https://doi.org/10.1070/rc2000v069n09abeh000586
  5. Кощеева А.М., Родин А.В., Ананьев А.В. // Радиохимия. 2023. Т. 65. № 4. C. 303–309.
  6. Закурдаева О.А., Нестеров С.В., Фельдман В.И. // VI Рос. конф. «Актуальные проблемы химии высоких энергий». М., 2015. С. 192–195.
  7. Chaudhary A., Rawat E. // Int. J. Inorg. Chem. 2014. Vol. 2014. P. 1–30. https://doi.org/10.1155/2014/509151
  8. Nesterov S.V., Zakurdaeva O.A., Kochetkova M.A., Kuchkina I.O. // Russ. Chem. Bull., Int. Ed. 2020. Vol. 69. № 7. P. 1329–1335. https://doi.org/10.1007/s11172-020-2906-4
  9. Matel L., Bilbao T. // J. Radioanal. Nucl. Chem. 1989. Vol. 137. N 3. P. 183–190. https://doi.org/10.1007/bf02167773
  10. Еремин В.В. Макроциклические соединения в ядерных технологиях: Учеб. пособие. СПб., 2022. 52 с.
  11. Sharma J.N., Khan P.N., Dhami P.S., Jagasia P., Tessy V., Kaushik C.P. // Sep. Purif. Technol. 2019. Vol. 229. ID 115502. https://doi.org/10.1016/j.seppur.2019.04.032
  12. Wang J., Zhuang S. // Nucl. Eng. Technol. 2020. Vol. 52. N 2. P. 328–336. https://doi.org/10.1016/j.net.2019.08.001
  13. Xu C., Yuan L., Shen X., Zhai M. // Dalton Trans. 2010. Vol. 39. № 16. P. 3897–3902. https://doi.org/10.1039/B925594J
  14. Horne G.P., Gregson C.R., Sims H.E., Orr R.M., Taylor R.J., Pimblott S.M. // J. Phys. Chem. B. 2017. Vol. 121. N 4. P. 883–889. https://doi.org/10.1021/acs.jpcb.6b12061
  15. Блажева И.В., Голецкий Н.Д., Зильберман Б.Я., Смирнов И.В., Шадрин А.Ю. Патент № 2473144 C1. Заявл. 26.06.2011; опубл. 20.01.2013.
  16. Давыдов Е.Я., Гапонова И.С., Парийский Г.Б., Похолок Т.В. // Высокомолекуляр. соединения. Сер. А. 2006. Т. 48. № 4. С. 599–607.
  17. Давыдов Е.Я., Гапонова И.С., Похолок Т.В., Парийский Г.Б., Заиков Г.Е. // Хим. физика и мезоскопия. 2007. Т. 9. № 2. С. 112–134.
  18. Родин А.В., Кощеева А.М., Шеламов К.В., Гезалян Л.В., Понизов А.В., Ананьев А.В. // Вопр. радиац. безопасности. 2024. № 1. С. 3–14.
  19. Баллод А.П., Штерн В.Я. // Успехи химии. 1976. 45. № 8. С. 1428–1460.
  20. Recommendations on the Transport of Dangerous Goods. Model Regulations. United Nations, 2019. 21st Ed. Vol. 1. 470 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of contact of the studied samples with nitrogen dioxide.

Download (88KB)
3. Fig. 2. Thermograms of heating of DB21K7 samples before [18] and after contact with NO2 at a heating rate of 5 deg/min in atmospheres: a – inert, b – oxidizing.

Download (172KB)
4. Fig. 3. Chromatogram of highly and non-volatile compounds – decomposition products of sample 2 at a temperature of 400°C in an inert atmosphere. Temperature of the chromatographic column, °C: a – 80, b – 180.

Download (123KB)
5. Fig. 4. Chromatogram of volatile compounds of sample 1 decomposition at a temperature of 400°C in an inert atmosphere (chromatographic column temperature 80°C).

Download (69KB)
6. Fig. 5. Chromatogram of highly and non-volatile decomposition products of sample 2 at a temperature of 325°C in an oxidizing atmosphere. Temperature of the chromatographic column, °C: a – 80, b – 180.

Download (111KB)
7. Fig. 6. The intensity of the peak m/z = 46 superimposed on the heating thermogram of sample 2 in an oxidizing atmosphere.

Download (82KB)
8. Fig. 7. Thermogram of heating of samples 3 and 4 at a heating rate of 5 deg/min in atmospheres: a – inert, b – oxidizing.

Download (140KB)
9. Fig. 8. Chromatogram of volatile compounds of sample 3 decomposition at a temperature of 300°C in atmospheres (chromatographic column temperature 120°C): a – inert, b – oxidative.

Download (125KB)
10. Fig. 9. Signal intensity m/z = 46 superimposed on the heating thermogram of sample 3 after contact with NO2 in an oxidizing atmosphere.

Download (74KB)

Copyright (c) 2024 Russian Academy of Sciences