Biological bases of plant protection from ergot infection

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Ergot causes significant economic losses every year in agriculture, livestock and food industry around the world. Currently, there is no way to provide complete protection of plants from infection by this pathogen, or complete purification of agricultural products from these mycotoxins. This review has reviewed the most current trends in ergot control, such as management of crop areas, grasslands and pastures, fungicides, detoxification of products, selection at plant resistance and reducing infections incidence associated with control of the cytoplasmic male sterility and fertility restoration. Efficient management of crop industry and production quality are the most used and reliable methods today. Product detoxification and fungicide applications require further research and can be used only in conjunction with some other method. Selection for resistance and restoration of fertility is promising ways in the future. In our opinion, the most promising at this stage is the combination of several methods of plant protection and product quality control. An integrated approach to solving this problem can maximally protect humans and pets from the toxic effects of ergot.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Volnin

All-Russian Scientific Research Institute of Medicinal and Aromatic Plants

Хат алмасуға жауапты Автор.
Email: volnin.а@mail.ru
Ресей, Moscow

N. Tsybulko

All-Russian Scientific Research Institute of Medicinal and Aromatic Plants

Email: ostafevo11@yandex.ru
Ресей, Moscow

A. Bokhan

All-Russian Scientific Research Institute of Medicinal and Aromatic Plants

Email: alexboxan1980@mail.ru
Ресей, Moscow

Әдебиет тізімі

  1. Agriopoulou S. Ergot alkaloids mycotoxins in cereals and cereal-derived food products: characteristics, toxicity, prevalence, and control strategies. Agronomy. 2021. V. 11 (5). P. 931. https://doi.org/10.3390/agronomy11050931
  2. Alaoufi S., Friskop A., Simsek S. Effect of field-applied fungicides on Claviceps purpurea sclerotia and Associated Toxins in Wheat. J. Food Prot. 2023. 86(3). 100046. https://doi.org/10.1016/j.jfp.2023.100046
  3. Alaoufi S.H. Survey of Claviceps purpurea and fusarium toxins in spring wheat and fungicide efficacy on ergot sclerotia, alkaloid content, and saprophytic Fusarium associated toxins. Doctoral thesis. North Dakota, 2022.
  4. Arroyo-Manzanares N., Rodríguez-Estévez V., García-Campaña A.M. et al. Determination of principal ergot alkaloids in swine feeding. J. Sci. Food and Agriculture. 2021. V. 101 (12). P. 5214–5224. https://doi.org/10.1002/jsfa.11169
  5. Ault-Seay T.B., Melchior-Tiffany E.A., Clemmons B.A. et al. Rumen and serum metabolomes in response to endophyte-infected tall fescue seed and isoflavone supplementation in beef steers. Toxins. 2020. V. 12(12). 744. https://doi.org/10.3390/toxins12120744
  6. Babič J., Tavčar-Kalcher G., Celar F.A. et al. Ergot and ergot alkaloids in cereal grains intended for animal feeding collected in Slovenia: occurrence, pattern and correlations. Toxins. 2020. V. 12 (11). P. 730. https://doi.org/10.3390/toxins12110730
  7. Bernhard T., Koch M., Snowdon R.J. et al. Undesired fertility restoration in msm1 barley associates with two mTERF genes. Theoret. Appl. Genetics. 2019. V. 132 (5). P. 1335–1350. 10.1007/s00122-019-03281-9' target='_blank'>https://doi: 10.1007/s00122-019-03281-9
  8. Berraies S., Walkowiak S., Buchwaldt L. et al. Ergot (Claviceps spp.) of cereals in Western Canada. Plant Health Cases. 2023. https://doi.org/10.1079/planthealthcases.2023.0004
  9. Börner A., Korzun V., Polley A. et al. Genetics and molecular mapping of a male fertility restoration locus (Rfg1) in rye (Secale cereale L.). Theoret. Appl. Genetics. 1998. V. 97 (1). P. 99–102. https://doi.org/10.1007/s001220050871
  10. Bryła M., Ksieniewicz-Woźniak E., Waśkiewicz A. et al. Stability of ergot alkaloids during the process of baking rye bread. Lebensm.-Wiss. Technol. 2019. V. 110. P. 269. https://doi.org/10.1016/j.lwt.2019.04.065
  11. Cano R., Lenz A.R., Galan-Vasquez E. et al. Gene regulatory network inference and gene module regulating virulence in Fusarium oxysporum. Front. Microbiol. 2022. V. 13. Art. 861528. https://doi.org/10.3389/fmicb.2022.861528
  12. Carbonell-Rozas L., Mahdjoubi C.K., Arroyo-Manzanares N. et al. Occurrence of ergot alkaloids in barley and wheat from Algeria. Toxins. 2021. V. 13 (5). P. 316. https://doi.org/10.3390/toxins13050316.
  13. Cherewyk J.E., Grusie-Ogilvie T.J., Parker S.E. et al. Ammonization of the R- and S-epimers of ergot alkaloids to assess detoxification potential. J. Agricultural Food Chem. 2022. V. 70 (29). P. 8931–8941. https://doi.org/10.1021/acs.jafc.2c01583
  14. Cherewyk J.E., Parker S.E., Blakley B.R. et al. Assessment of the vasoactive effects of the (S)-epimers of ergot alkaloids in vitro. J. Animal Science. 2020. V. 98 (7). skaa203. https://doi.org/10.1093/jas/skaa203
  15. Chung S.W.C. A critical review of analytical methods for ergot alkaloids in cereals and feed and in particular suitability of method performance for regulatory monitoring and epimer-specific quantification. Food Additives and Contaminants: Pt A. 2021. V. 38 (6). P. 997–1012. https://doi.org/10.1080/19440049.2021.1898679
  16. Curtis C.A., Lukaszewski A.J. Localization of genes in rye that restore male fertility to hexaploid wheat with timopheevi cytoplasm. Plant Breeding. 1993. V. 111 (2). P. 106–112. https://doi.org/10.1111/j.1439-0523.1993.tb00615.x.
  17. Debnath S., Sharma D., Chaudhari S.Y. et al. Wheat ergot fungus-derived and modified drug for inhibition of intracranial aneurysm rupture due to dysfunction of TLR-4 receptor in Alzheimer’s disease. PLOS One. 2023. V. 18 (1). e0279616. https://doi.org/10.1371/journal.pone.0279616
  18. Delph L.F., Touzet P., Bailey M.F. Merging theory and mechanism in studies of gynodioecy. Trends Ecol. Evol. 2007. V. 22 (1). P. 17–24. https://doi.org/10.1016/j.tree.2006.09.013
  19. Demarchi J.J.A.A., Giacomini A.A., Mattos W.T. et al. Components of seed production and ergot resistance used as criteria for selection of Brachiaria hybrids. Acta Scientiarum. 2022. V. 44 (1). e56622. https://doi.org/10.4025/actascianimsci.v44i1.56622
  20. Dohmen G., Hessberg H., Geiger H.H. et al. CMS in rye: Comparative RFLP and transcript analyses of mitochondria from fertile and male-sterile plants. Theoret. Appl. Genetics. 1994. V.89 (7–8). P. 1014–1018. https://doi.org/10.1007/BF00224532
  21. Doi Y., Wakana D., Takeda H. et al. Production of Ergot Alkaloids by the Japanese Isolate Claviceps purpurea var. agropyri on Rice Medium. Adv. Microbiol. 2022. V. 12 (4). P. 254–269. https://doi.org/10.4236/aim.2022.124019
  22. Dopstadt J., Neubauer L., Tudzynski P. et al. The epipolythiodiketopiperazine gene cluster in Claviceps purpurea: dysfunctional cytochrome P450 enzyme prevents formation of the previously unknown clapurines. PLOS One. 2016. V. 11 (7). e0158945. https://doi.org/10.1371/journal.pone.0158945
  23. Dung J.K.S., Kaur N., Walenta D.L. et al. Reducing Claviceps purpurea sclerotia germination with soil-applied fungicides. Crop Protect. V. 106. 2018. P. 146–149. https://doi.org/10.1016/j.cropro.2017.12.023
  24. Eady C. The impact of alkaloid-producing Epichloe endophyte on forage ryegrass breeding: a New Zealand perspective. Toxins. 2021. V. 13 (2). P. 158. https://doi.org/10.3390/toxins13020158
  25. European Food Safety Authority (EFSA). Scientific opinion on ergot alkaloids in food and feed. EFSA J. 2012. V. 10. 2798. https://doi.org/10.2903/j.efsa.2012.2798
  26. Falke K.C., Wilde P., Miedaner T. Rye introgression lines as source of alleles for pollen-fertility restoration in pampa cms. Plant Breeding. 2009. V. 128. P. 528–531. https://doi.org/10.1111/j.1439–0523.2008.01589.x
  27. Flieger M., Stodůlková E., Wyka S.A. et al. Ergochromes: heretofore neglected side of ergot toxicity. Toxins. 2019. V. 11 (8). P. 439. https://doi.org/10.3390/toxins11080439
  28. Florea S., Jaromczyk J., Schardl C.L. Non-transgenic CRISPR-mediated knockout of entire ergot alkaloid gene clusters in slow-growing asexual polyploid fungi. Toxins. 2021. V. 13 (2). P. 153. https://doi.org/10.3390/toxins13020153
  29. Geiger H.H. Restoration of pollen fertility to cytoplasmic male sterile rye. Theoret. Appl. Genetics. 1972. V. 42 (1). P. 32–33.
  30. Geiger H.H., Miedaner T. Genetic basis and phenotypic stability of male-fertility restoration in rye. Vorträge Pflanzenzücht. 1996. V. 35. P. 27–38.
  31. Geiger H.H., Morgenstern K. Angewandt-genetische Studien zur cytoplasmatischen Pollensterilität bei Winterroggen. Theoret. Appl. Genetics. 1975. V. 46. P. 269–276.
  32. Gordon A., Basler R., Bansept-Basler P. et al. The identification of QTL controlling ergot sclerotia size in hexaploid wheat implicates a role for the Rht dwarfing alleles. Theoret. Appl. Genetics. 2015. V. 128. P. 2447–2460. https://doi.org/10.1007/s00122-015-2599-5
  33. Gordon A., McCartney C., Knox R.E. et al. Genetic and transcriptional dissection of resistance to Claviceps purpurea in the durum wheat cultivar Greenshank. Theoret. Appl. Genetics. 2020. V. 133. P. 1873–1886. https://doi.org/10.1007/s00122-020-03561-9
  34. Hackauf B., Bauer E., Korzun V. et al. Fine mapping of the restorer gene Rfp3 from an Iranian primitive rye (Secale cereale L.). Theoret. Appl. Genetics. 2017. V. 130 (6). P. 1179–1189. https://doi.org/10.1007/s00122-017-2879-3
  35. Halliwell B., Cheah I. Ergothioneine, where are we now? FEBS Letters. 2022. V. 596 (10). https://doi.org/1227-1230 10.1002/1873-3468.14350
  36. Hicks C., Witte T.E., Sproule A. et al. Evolution of the ergot alkaloid biosynthetic gene cluster results in divergent mycotoxin profiles in Claviceps purpurea sclerotia. Toxins. 2021. V. 13 (12). P. 861. https://doi.org/10.3390/toxins13120861
  37. Johnson J.W., Ellis M.J., Piquette Z.A. et al. Antibacterial activity of metergoline analogues: revisiting the ergot alkaloid scaffold for antibiotic discovery. ACS Medicinal Chemistry Letters. 2022. V. 13 (2). P. 284–291. https://doi.org/10.1021/acsmedchemlett.1c00648
  38. Johnson L.J., de Bonth A.C.M., Briggs L.R. et al. The exploitation of Epichloae endophytes for agricultural benefit. Fungal Diversity. 2013. V. 60 (1). P. 171–188. https://doi.org/10.1007/s13225-013-0239-4
  39. Jonkers W., Gundel P.E., Verma S.K. et al. Editorial: Seed microbiome research. Front. Microbiol. 2022. V. 13. Art. 943329. https://doi.org/10.3389/fmicb.2022.943329
  40. Juroszek P., Racca P., Link S. et al. Overview on the review 622 articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks. Plant Pathol. 2020. V. 169 (2). P. 179–193. https://doi.org/10.1111/ppa.13119
  41. Kebede D., Dramadri I.O., Rubaihayo P. et al. Resistance of sorghum genotypes to ergot (Claviceps species). Agriculture. 2023. V. 13 (5). e1100. https://doi.org/10.3390/agriculture13051100
  42. Kim Y.J., Zhang D. Molecular control of male fertility for crop hybrid breeding. Trends in Plant Sci. 2018. V. 23 (1). P. 53–65. https://doi.org/10.1016/j.tplants.2017.10.001
  43. Klotz J.L. Global impact of ergot alkaloids. Toxins. 2022. V. 14 (3). P. 186. https://doi.org/10.3390/toxins14030186
  44. Kobylyanskiy V.D. Cytoplasmatische männliche Sterilität bei diploidem Roggen. Vestnik Selskokhoz. Nauki. 1969. V. 24. P. 18–22.
  45. Kobylyanskiy V.D. Production of sterile analogues of winter rye varieties, sterile maintainers and fertile restorers. Tr. Prikladnoi Bot. Genet. Selekt. 1971. 44. P. 76–85.
  46. Kodisch A., Schmiedchen B., Eifler J. et al. Maternal differences for the reaction to ergot in unfertilized hybrid rye (Secale cereale). Eur J. Plant Pathol. 2022. V. 163. P. 181–191. https://doi.org/10.1007/s10658-022-02467-0
  47. Kodisch A., Wilde P., Schmiedchen B. et al. Ergot infection in winter rye hybrids shows differential contribution of male and female genotypes and environment. Euphytica. 2020. V. 216 (4). P. 65. https://doi.org/10.1007/s10681-020-02600-2
  48. Koester L.R., Poole D.H., Serão N.V.L. et al. Beef cattle that respond differently to fescue toxicosis have distinct gastrointestinal tract microbiota. PLOS One. 2020. V. 15. e0229192. https://doi.org/10.1371/journal.pone.0229192
  49. Kozák L., Szilágyi Z., Tóth L. et al. Functional characterization of the idtF and idtP genes in the Claviceps paspali indole diterpene biosynthetic gene cluster. Folia Microbiologica. 2020. 65 (3). P. 605–613. https://doi.org/10.1007/s12223-020-00777-6
  50. Kozák L., Szilágyi Z., Vágó B. et al. Inactivation of the indolediterpene biosynthetic gene cluster of Claviceps paspali by Agrobacterium-mediated gene replacement. Appl. Microbiol. Biotechnol. 2018. V. 102 (7). P. 3255–3266. https://doi.org/10.1007/s00253-018-8807-x
  51. Laihonen M., Saikkonen K., Helander M. et al. Epichloë endophyte-promoted seed pathogen increases host grass resistance against insect herbivory. Front. Microbiol. 2022. V. 12. e786619. https://doi.org/10.3389/fmicb.2021.786619
  52. Łapiński M., Stojałowski S. The C-source of sterility-inducing cytoplasm in rye: Origin, identity and occurrence. Vorträge Pflanzenzücht. 1996. V. 35. P. 51–60.
  53. Lattanzio V.M.T., Verdini E., Sdogati S. et al. Undertaking a new regulatory challenge: monitoring of ergot alkaloids in Italian food commodities. Toxins. 2021. V. 13 (12). P. 871. https://doi.org/10.3390/toxins13120871
  54. Lea K.M., Smith S.R. Using on-farm monitoring of ergovaline and tall fescue composition for horse pasture management. Toxins. 2021. V. 13 (10). P. 683. https://doi.org/10.3390/toxins13100683
  55. Li S., Ge F.R., Xu M. et al. Arabidopsis COBRA-LIKE10, a GPI-anchored protein, mediates directional growth of pollen tubes. The Plant Journal. 2013. V. 74 (3). P. 486–497. https://doi.org/10.1111/tpj.12139
  56. Lionetti V., Cervone F., Bellincampi D. Methyl esterification of pectin plays a role during plant – pathogen interactions and affects plant resistance to diseases. J. Plant Physiol. 2012. V. 169 (16). P. 1623–1630. https://doi.org/10.1016/j.jplph.2012.05.006
  57. Liu M., Findlay W., Dettman J. et al. Mining indole alkaloid synthesis gene clusters from genomes of 53 Claviceps strains revealed redundant gene copies and an approximate evolutionary hourglass model. Toxins. 2021. V. 13 (11). P. 799. https://doi.org/10.3390/toxins13110799
  58. Liu M., Kolařík M., Tanaka E. The 168-year taxonomy of Claviceps in the light of variations: From three morphological species to four sections based on multigene phylogenies. Can. J. Plant Pathol. 2022. V. 44 (1407). P. 783–792. https://doi.org/10.1080/07060661.2022.2085327
  59. Lünne F., Köhler J., Stroh C. et al. Insights into ergochromes of the plant pathogen Claviceps purpurea. J. Natural Products. 2021. V. 84 (10). P. 2630–2643. https://doi.org/10.1021/acs.jnatprod.1c00264
  60. Lünne F., Niehaus E.-M., Lipinski S. et al. Identification of the polyketide synthase PKS7 responsible for the production of lecanoric acid and ethyl lecanorate in Claviceps purpurea. Fungal Genetics Biol. 2020. V. 145. P. 103481. https://doi.org/10.1016/j.fgb.2020.103481
  61. Ma Z.Q., Sorrells M.E. Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphism. Crop Sci. 1995. 35. P. 1137–1143. https://doi.org/10.2135/cropsci1995.0011183X003500040037x
  62. Mahmood K., Orabi J., Kristensen P.S. et al. De novo transcriptome assembly, functional annotation, and expression profiling of rye (Secale cereale L.) hybrids inoculated with ergot (Claviceps purpurea). Scientific Reports. 2020. V. 10 (1). e13475. https://doi.org/10.1038/s41598-020-70406-2
  63. Malinovsky F.G., Fangel J.U., Willats W.G. The role of the cell wall in plant immunity. Front. Plant Sci. 2014. V. 6 (5). P. 178. https://doi.org/10.3389/fpls.2014.00178
  64. Malinowski D.P., Belesky D.P. Epichloë (formerly Neotyphodium) fungal endophytes increase adaptation of cool-season perennial grasses to environmental stresses. Acta Agrobotanica. 2019. V. 72 (2). Art. 1767. https://doi.org/10.5586/aa.1767
  65. McLaren N.W. Efficacy of fungicides in the control of ergot (Claviceps africana) in sorghum (Sorghum bicolor) hybrid seed production. South African J. Plant Soil. 2003. V. 20 (3). P. 154–156. https://doi.org/10.1080/02571862.2003.10634926
  66. Melonek J., Duarte J., Martin J. et al. The genetic basis of cytoplasmic male sterility and fertility restoration in wheat. Nature Communication. 2021. V. 12. Art. 1036. https://doi.org/10.1038/s41467-021-21225-0
  67. Melz G., Adolf K. Genetic analysis of rye (Secale cereale L.) genetics of male sterility of the G-type. Theoret. Appl. Genetics. 1991. V. 82 (6). P. 761–764. https://doi.org/10.1007/BF00227322
  68. Melz G., Melz G., Hartman F. Genetics of a male-sterile rye of ‘G-type’ with results of the first F1-hybrids. Plant Breeding and Seed Sci. 2003. V. 47. P. 47–55.
  69. Menzies J.G., Turkington T.K. An overview of the ergot (Claviceps purpurea) issue in Western Canada: Challenges and solutions. Can J. Plant Pathol. 2015. 37. P. 40–51. https://doi.org/101080/07060661.2014.986527
  70. Merkel S., Dib B., Maul R. et al. Degradation and epimerization of ergot alkaloids after baking and in vitro digestion. Anal. Bioanal. Chem. 2012. V. 404. P. 2489–2497. https://doi.org/10.1007/s00216-012-6386-8
  71. Mette M.F., Gils M., Longin C.F.H. et al. Hybrid breeding in wheat. In: Advances in wheat genetics: from genome to field / Y. Ogihara, S. Takumi, H. Handa (eds). Springer, Tokyo, 2015, pp. 225–232.
  72. Miedaner T., Geiger H.H. Biology, genetics, and management of ergot (Claviceps spp.) in rye, sorghum, and pearl millet. Toxins. 2015. V. 7 (3). P. 659–678. https://doi.org/10.3390/toxins7030659
  73. Miedaner T., Glass C., Dreyer F. et al. Mapping of genes for male-fertility restoration in ‘Pampa’ CMS winter rye (Secale cereale L.). Theoret. Appl. Genetics. 2000. V. 101 (8). P. 1226–1233. https://doi.org/10.1007/s001220051601
  74. Miedaner T., Herter C.P., Goßlau H. et al. Correlated effects of exotic pollen-fertility restorer genes on agronomic and quality traits of hybrid rye. Plant Breeding. 2017. V. 136 (2). P. 224–229. https://doi.org/10.1111/pbr.12456
  75. Miedaner T., Kodisch A., Raditschnig A. et al. Ergot alkaloid contents in hybrid rye are reduced by breeding. Agriculture. 2021. V. 11 (6). P. 526. https://doi.org/10.3390/agriculture11060526
  76. Miedaner T., Korzun V., Wilde P. Effective pollen-fertility restoration is the basis of hybrid rye production and ergot mitigation. Plants. 2022. V. 11 (9). Art. 1115. https://doi.org/10.3390/plants11091115
  77. Mote R.S., Filipov N.M. Use of integrative interactomics for improvement of farm animal health and welfare: an example with fescue toxicosis. Toxins. 2020. V. 12 (10). P. 633. https://doi.org/10.3390/toxins12100633
  78. Niedziela A., Brukwiński W., Bednarek P.T. Genetic mapping of pollen fertility restoration QTLs in rye (Secale cereale L.) with CMS Pampa. J. Applied Genetics. 2021. V. 62(2). P. 185–198. https://doi.org/10.1007/s13353-020-00599-9
  79. Oeser B., Heidrich P.M., Müller U. et al. Polygalacturonase is a pathogenicity factor in the Claviceps purpurea/rye interaction. Fungal Genetics Biol. 2002. V. 36 (3). P. 176–186. https://doi.org/10.1016/S1087-1845(02)00020-8
  80. Ordza T., Węgrzyn E., Dominiak-Świgoń M. et al. Mycobiota of rye seeds infected with ergot fungi. Current Research in Environmental and Applied Mycology (J. Fungal Biology). 2022. V. 12 (1). P. 95–101. https://doi.org/10.5943/cream/12/1/8
  81. Pageau D., Wauthy J., Collin J. Evaluation of barley cultivars for resistance to ergot fungus, Claviceps purpurea (Fr.) Tul. Canadian J. Plant Sci. 1994. V. 74 (3). P. 663–665. https://doi.org/10.4141/cjps94-118
  82. Pažoutová S., Frederickson D.E. Genetic diversity of Claviceps africana on sorghum and Hyparrhenia. Plant Pathol. 2005. V. 54. P. 749–763. https://doi.org/10.1111/j.1365-3059.2005.01255.x
  83. Pérez L.I., Gundel P.E., Ghersa C.M. et al. Family issues: fungal endophyte protects host grass from the closely related pathogen Claviceps purpurea. Fungal Ecol. 2013. V. 6 (5). P. 379–386. https://doi.org/10.1016/j.funeco.2013.06.006
  84. Pérez L.I., Gundel P.E., Marrero H.J. et al. Symbiosis with systemic fungal endophytes promotes host escape from vector-borne disease. Oecologia. 2017. V. 184 (1). P. 237–245. https://doi.org/10.1007/s00442-017-3850-3
  85. Platford R.G., Bernier C.C. Resistance to Claviceps purpurea in spring and durum wheat. Nature. 1970. N226(5247). P. 770. https://doi.org/10.1038/226770a0
  86. Pleadin J., Kudumija N., Škrivanko M. et al. Ergot sclerotia and ergot alkaloids occurrence in wheat and rye grains produced in Croatia. Veterinarska Stanica. 2022. V. 53 (5). P. 503–511. https://doi.org/10.46419/vs.53.5.14
  87. Poole D.H., Mayberry K.J., Newsome M. et al. Evaluation of resistance to fescue toxicosis in purebred angus cattle utilizing animal performance and cytokine response. Toxins. 2020. V. 12 (12). P. 796. https://doi.org/10.3390/toxins12120796
  88. Qiao Y.-M., Wen Y.-H., Gong T. et al. Improving ergometrine production by easO and easP Knockout in Claviceps paspali. Fermentation. 2022. V. 8 (6). P. 263. https://doi.org/10.3390/fermentation8060263
  89. Rabanus-Wallace M.T., Hackauf B., Mascher M. et al. Chromosome-scale genome assembly provides insights into rye biology, evolution, and agronomic potential. Nature Genetics. 2021. V. 53 (4). P. 564–573. https://doi.org/10.1038/s41588-021-00807-0
  90. Rahimabadi P.D., Yourdkhani S., Rajabi M. et al. Ergotism in feedlot cattle: clinical, hematological, and pathological findings. Comparative Clinical Pathol. 2022. V. 31 (2). P. 281–291. https://doi.org/10.1007/s00580-022-03331-7
  91. Rios E., Blount A., Harmon P. et al. Ergot resistant tetraploid bahiagrass and fungicide effects on seed yield and quality. Plant Health Progress. 2015. V. 16 (2). P. 56–62. https://doi.org/10.1094/PHP-RS-14-0051
  92. Robles P., Quesada V. Research progress in the molecular functions of plant mTERF proteins. Cells. 2021. V. 10 (2). P. 205. https://doi.org/10.3390/cells10020205
  93. Ryley M., Bhuiyan S., Herde D. et al. Efficacy, timing and method of application of fungicides for management of sorghum ergot caused by Claviceps africana. Australasian Plant Pathol. 2003. V. 32 (3). P. 329–338. http://dx.doi.org/10.1071/ap03034
  94. Saikkonen K., Young C.A., Helander M. et al. Endophytic Epichloë species and their grass hosts: from evolution to applications. Plant Molecular Biol. 2016. V. 90 (6). P. 665–675. https://doi.org/10.1007/s11103-015-0399-6
  95. Schnable P.S., Wise R.P. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends in Plant Sci. 1998. V. 3 (5). P. 175–180. https://doi.org/10.1016/S1360-1385(98)01235-7
  96. Schultz T.R., Johnston W.J., Golob C.T. Control of ergot in Kentucky bluegrass seed production using fungicides. Plant Disease. 1993. V. 77 (7). P. 685–687.
  97. Schummer C., Zandonella I., van Nieuwenhuyse A. et al. Epimerization of ergot alkaloids in feed. Heliyon. 2020. V. 6. e04336. https://doi.org/10.1016/j.heliyon.2020.e04336
  98. Shahid M.G., Nadeem M., Gulzar A. et al. Novel ergot alkaloids production from Penicillium citrinum employing response surface methodology technique. Toxins. 2020. V. 12 (7). P. 427. https://doi.org/10.3390/toxins12070427
  99. Shahinnia F., Geyer M., Block A. et al. Identification of Rf9, a gene contributing to the genetic complexity of fertility restoration in hybrid wheat. Front. Plant Sci. 2020. V. 11. P. 1720. https://doi.org/10.3389/fpls.2020.577475
  100. Sheshegova T.K., Shchekleina L.M., Antipova T.V. et al. Search for rye and wheat genotypes which are resistant to Claviceps purpurea (Fr.) Tul. and hamper accumulation of ergoalkaloids in sclerotia. Agricultural Biology. 2021. V. 56 (3). P. 549–558. (In Russ.). https://doi.org/10.15389/agrobiology.2021.3.549rus
  101. Sheshegova T.K., Shchekleina L.M., Zhelifonova V.P. et al. A resistance of rye varieties to ergot and ergot alkaloid content in Claviceps purpurea sclerotia on the Kirov region environments. Mikologiya i fitopatologiya. 2019. V. 53 (3). P. 177–182. (In Russ.). https://doi.org/10.1134/S0026364819030127
  102. Smakosz A., Kurzyna W., Rudko M. et al. The usage of ergot (Claviceps purpurea (Fr.) Tul.) in obstetrics and gynecology: a historical perspective. Toxins. 2021. V. 13 (7). P. 492. https://doi.org/10.3390/toxins13070492.
  103. Stanford K., Swift M., Wang Y. et al. Effects of feeding a mycotoxin binder on nutrient digestibility, alkaloid recovery in feces, and performance of lambs fed diets contaminated with cereal ergot. Toxins. 2018. V. 10. P. 312. https://doi.org/10.3390/toxins10080312
  104. Stojałowski S.A., Milczarski P., Hanek M. et al. DArT markers tightly linked with the Rfc1 gene controlling restoration of male fertility in the CMS-C system in cultivated rye (Secale cereale L.). J. Applied Genetics. 2011. V. 52 (3). P. 313–318. https://doi.org/10.1007/s13353-011-0049-x
  105. Tente E. Investigations into the molecular interactions between Claviceps purpurea, the causal agent of ergot, and cereal hosts. Doctoral thesis. University of Cambridge. 2020. https://doi.org/10.17863/CAM.64578
  106. Tente E., Carrera E., Gordon A. et al. The role of the wheat reduced height (Rht)-DELLA mutants and associated hormones in infection by Claviceps purpurea, the causal agent of ergot. Phytopathology. 2022. 112(4). P. 842–851. https://doi.org/10.1094/PHYTO-05-21-0189-r
  107. Tente E., Ereful N., Rodriguez A.C. et al. Reprogramming of the wheat transcriptome in response to infection with Claviceps purpurea, the causal agent of ergot. BMC Plant Biology. 2021. V. 21. P. 316. https://doi.org/10.1186/s12870-021-03086-3
  108. Thakur R.P., Rai K.N. Pearl millet ergot research: advances and implications. In: Sorghum and millets diseases / J.F. Leslie (eds). Iowa State Press, Iowa, 2003, pp. 57–64. https://doi.org/10.1002/9780470384923.ch9
  109. Tittlemier S., Drul D., Roscoe M. et al. Fate of ergot alkaloids during laboratory scale durum processing and pasta production. Toxins. 2019. V. 11. P. 195. https://doi.org/10.3390/toxins11040195
  110. Tsukiboshi T., Shimanuki T., Uematsu T. Claviceps sorghicola sp. nov., a destructive ergot pathogen of sorghum in Japan. Mycol. Res. V. 103 (11). 1999. P. 1403–1408. https://doi.org/10.1017/S0953756299008539
  111. Uhlig S., Botha C.J., Vrеlstad T. et al. Indole-diterpenes and ergot alkaloids in Cynodon dactylon (Bermuda grass) infected with Claviceps cynodontis from an outbreak of tremors in cattle. J. Agricultural Food Chemistry. 2009. V. 57 (23). P. 11112–11119. https://doi.org/10.1021/jf902208w
  112. van der Hoek S.A., Rusnák M., Jacobsen I.H. et al. Engineering ergothioneine production in Yarrowia lipolytica. FEBS Letters. 2022. V. 596 (10). P. 1356–1364. https://doi.org/10.1002/1873-3468.14239
  113. van der Hoek S.A., Rusnák M., Wang G. et al. Engineering precursor supply for the high-level production of ergothioneine in Saccharomyces cerevisiae. Metabolic Engineering. 2022. V. 70. P. 129–142. https://doi.org/10.1016/j.ymben.2022.01.012
  114. Vendelbo N.M., Mahmood K., Sarup P. et al. Discovery of a novel leaf rust (Puccinia recondita) resistance gene in rye (Secale cereale L.) using association genomics. Cells. 2022. V. 11 (1). P. 64. https://doi.org/10.3390/cells11010064
  115. Vendelbo N.M., Mahmood K., Sarup P. et al. Genomic scan of male fertility restoration genes in a ‘Gülzow’ type hybrid breeding system of rye (Secale cereale L.). Int. J. Molec. Sci. 2021. V. 22 (17). Art. 9277. https://doi.org/10.3390/ijms22179277
  116. Volnin A.A., Savin P.S. Ergot Claviceps purpurea (Fries) Tulasne alkaloid diversity and virulence: evolution, genetic diversification and metabolic engineering (review). Agricultural Biology. 2022. V. 57 (5). P. 852–881. (In Russ.). https://doi.org/10.15389/agrobiology.2022.5.852rus
  117. Volpi C., Raiola A., Janni M. et al. Claviceps purpurea expressing polygalacturonases escaping PGIP inhibition fully infects PvPGIP2 wheat transgenic plants but its infection is delayed in wheat transgenic plants with increased level of pectin methyl esterification. Plant Physiol. Biochem. 2013. V. 73. P. 294–301. https://doi.org/10.1016/j.plaphy.2013.10.011
  118. Walkowiak S., Taylor D., Fu B.X. et al. Ergot in Canadian cereals – relevance, occurrence, and current status. Can. J. Plant Pathol. 2022. V. 44 (6): P. 793–805. https://doi.org/10.1080/07060661.2022.2077451
  119. Wang Z., Wan L., Zhang X. et al. Interaction between Brassica napus polygalacturonase inhibition proteins and Sclerotinia sclerotiorum polygalacturonase: implications for rapeseed resistance to fungal infection. Planta. 2021. V. 253 (2). P. 34. https://doi.org/10.1007/s00425-020-03556-2
  120. Wilbanks S.A., Justice S.M., West T. et al. Effects of tall fescue endophyte type and dopamine receptor D2 genotype on cow-calf performance during late gestation and early lactation. Toxins. 2021. V. 13 (3). P. 195. https://doi.org/10.3390/toxins13030195
  121. Wilde P., Miedaner T. Hybrid rye breeding. In: The rye genome. Compendium of plant genomes/ M.T. Rabanus-Wallace, N. Stein (eds.). Springer, 2021, pp. 13–41.
  122. Wricke G., Wilde P., Wehling P. et al. An isozyme marker for pollen fertility restoration in the Pampa cms system of rye (Secale cereale L.). Plant Breeding. 1993. V. 111. P. 290–294. https://doi.org/10.1111/j.1439-0523.1993.tb00644.x
  123. Wyka S., Broders K. Brome grasses represent the primary source of Claviceps purpurea inoculum associated with barley fields in the San Luis Valley of Colorado. Can. J. Plant Pathol. 2023. V. 45 (1). P. 55–29. https://doi 10.1080/07060661.2022.2091041
  124. Wyka S., Mondo S., Liu M. et al. A large accessory genome and high recombination rates may influence global distribution and broad host range of the fungal plant pathogen Claviceps purpurea. PLOS One. 2022. V. 17 (2). e0263496. https://doi.org/10.1371/journal.pone.0263496
  125. Wyka S.A., Mondo S.J., Liu M. et al. Whole-genome comparisons of ergot fungi reveals the divergence and evolution of species within the genus Claviceps are the result of varying mechanisms driving genome evolution and host range expansion. Genome Biol. Evol. 2021. V. 13 (2). evaa267. https://doi.org/10.1093/gbe/evaa267
  126. Xiong L., Xie Z., Ke J. et al. Engineering Mycolicibacterium neoaurum for the production of antioxidant ergothioneine. Food Bioengineering. 2022. V. 1 (1). P. 26–36. https://doi.org/10.1002/fbe2.12004
  127. Young J.C., Chen Z.J., Marquardt R.R. Reduction in alkaloid content of ergot sclerotia by chemical and physical treatment. J. Agric. Food Chem. 1983. V. 31. P. 413–415. https://doi.org/10.1021/jf00116a057
  128. Zhang H., Li X., White J.F. et al. Epichloë endophyte improves ergot disease resistance of host (Achnatherum inebrians) by regulating leaf senescence and photosynthetic capacity. J. Plant Growth Regulation. 2022. V. 41. P. 808–817. https://doi.org/10.1007/s00344-021-10340-3
  129. Волнин А.А., Савин П.С. (Volnin, Savin) Разнообразие и вирулентность алкалоидов cпорыньи Claviceps purpurea (Fries) Tulasne: эволюция, генетическая диверсификация и метаболическая инженерия (обзор) // Сельскохозяйственная биология. 2022. Т. 57. № 5. С. 852–881.
  130. Кобылянский В.Д. (Kobylyanskiy) Получение стерильных аналогов сортов озимой ржи, сохраняющих стерильность и восстановливающих фертильность // Тр. прикладной бот. генет. селекции. 1971. Т. 44. С. 76–85.
  131. Кобылянский В.Д. (Kobylyanskiy) Цитоплазматическая мужская стерильность у диплоидной ржи // Вестник cельскохоз. наук. 1969. Т. 24. С. 18–22.
  132. Шешегова Т.К., Щеклеина Л.М., Антипова Т.В. и др. (Sheshegova et al.) Поиск генотипов ржи и пшеницы, устойчивых к Claviceps purpurea (Fr.) Tul. и препятствующих накоплению эргоалкалоидов в склероциях // Сельскохозяйственная биология. 2021. Т. 56. № 3. С. 549–558.
  133. Шешегова Т.К., Щеклеина Л.М., Желифонова В.П. и др.(Sheshegove et al.) Устойчивость сортов ржи к спорынье и содержание алкалоидов спорыньи в склероциях Claviceps purpurea в условиях Кировской области // Микология и фитопатология. 2019. Т. 53. № 3. С. 177–182.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025