Photo-fenton reaction for the decomposition of RR195 dye in the presence of the metal-organic polymer MIL-53(Fe3+) and a composite with graphene oxide

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The metal-organic polymer of the composition Fe(OH)(BDC)×(H2O)2 – MIL-53(Fe) and the composite MIL-53(Fe)/GO (GO – graphene oxide) were obtained by the solvothermal method and characterized by X-ray diffraction and X-ray absorption and IR-Fourier spectroscopy, scanning electron microscopy. The presence of Fe2+ and Fe3+ ions in MIL-53(Fe) and MIL-53(Fe)/GO was established with a higher content of Fe2+ ions in MIL-53(Fe)/GO, which helps to increase the efficiency of the decomposition reaction of the RR195 dye, which is actively used in textile industry for dyeing fabrics in the photo-Fenton reaction.

全文:

受限制的访问

作者简介

G. Kuz’micheva

MIREA – Russian Technological University

Email: ms.asenka1984@mail.ru
俄罗斯联邦, 78 Vernadsky Avenue, Moscow, 119454

A. Gainanova

MIREA – Russian Technological University

编辑信件的主要联系方式.
Email: ms.asenka1984@mail.ru
俄罗斯联邦, 78 Vernadsky Avenue, Moscow, 119454

Ke Nguyen

MIREA – Russian Technological University

Email: ms.asenka1984@mail.ru
俄罗斯联邦, 78 Vernadsky Avenue, Moscow, 119454

E. Khramov

National Research Center “Kurchatov Institute”

Email: ms.asenka1984@mail.ru
俄罗斯联邦, 1 Akademika Kurchatova pl., Moscow 123182

R. Svetogorov

National Research Center “Kurchatov Institute”

Email: ms.asenka1984@mail.ru
俄罗斯联邦, 1 Akademika Kurchatova pl., Moscow 123182

参考

  1. Qasem N.A.A., Ben-Mansour R., Habib M.A. // Appl. En. 2018. V. 60. P. 317. https://doi.org/10.1016/j.apenergy.2015.10.011
  2. Almáši M., Zeleňák V., Palotai P. et al. // Inorg. Chem. Commun. 2018. V. 93. P. 115. https://doi.org/10.1016/j.inoche.2018.05.007
  3. Wang C.-C., Zhang Y.-Q., Li J., Wang P. // Appl. Catal. B. 2016. V. 193. P. 198. https://doi.org/10.1016/j.apcatb.2016.04.030
  4. Dhaka S., Kumar R., Deep A. et al. // Coord. Chem. Rev. 2019. V. 380. P. 330. https://doi.org/10.1016/j.ccr.2018.10.003
  5. Zhang C., Ai L., Jiang J. // J. Mater. Chem. A. 2015. V. 3. P. 3074. https://doi.org/10.1039/C4TA04622F
  6. Wang C.-C., Li J.-R., Lv X.-L. et al. // Energy Environ. Sci. 2014. V. 7. № 9. P. 2831. https://doi.org/10.1039/C4EE01299B
  7. Al-Rowaili F., Jamal A., Ba-Shammakh M.S., Rana A. // ACS Sustain. Chem. Eng. 2018. V. 6. P. 15895. https://doi.org/10.1021/acssuschemeng.8b03843
  8. Dhakshinamoorthy A., Alvaro M., Garcia H. // Chem. Commun. 2012. V. 48. № 92. P. 11275. https://doi.org/10.1039/C2CC34329K
  9. Trinh N.D., Hong S.-S. // J. Nanosci. Nanotechnol. 2015. V. 15. P. 5450. https://doi.org/10.1166/jnn.2015.10378
  10. Ai L., Zhang C., Li L., Jiang J. // Appl. Catal. B. 2014. V. 148–149. P. 191. https://doi.org/10.1016/j.apcatb.2013.10.056
  11. Liang R., Shen L., Jing F. et al. // ACS Appl. Mater. Interfaces. 2014. V. 7. № 18. P. 9507. https://doi.org/10.1021/acsami.5b00682
  12. Zhang Y., Zhou J., Chen J. et al. // J. Hazardous Mater. 2020. V. 392. P. 122315. https://doi.org/10.1016/j.jhazmat.2020.122315
  13. Dong C., Xing M., Zhang J. // Front. Environ. Chem. 2020. V. 1. P. 8. https://doi.org/10.3389/fenvc.2020.00008
  14. Xiong W., Zeng G., Yang Z. et al. // Sci. Total Environ. 2018. V. 627. P. 235. https://doi.org/10.1016/j.scitotenv.2018.01.249
  15. Zhao W., Zheng Y., Cui L. et al. // Chem. Eng. J. 2019. V. 371. P. 461. https://doi.org/10.1016/j.cej.2019.04.070
  16. Yang Z., Xu X., Liang X. et al. // Appl. Catal. B. 2016. V. 198. P. 112. https://doi.org/10.1016/j.apcatb.2016.05.041
  17. Vu T.A., Le G.H., Dao C.D. et al. // RSC Adv. 2015. V. 5. P. 5261. https://doi.org/10.1039/C4RA12326C
  18. Sarkar C., Basu J.K., Samanta A.N. // Chem. Eng. J. 2019. V. 377. P. 119621. https://doi.org/10.1016/j.cej.2018.08.007
  19. Chen Q., Zhang J., Lu J., Liu H. // Int. J. Hydrogen Energy. 2019. V. 44. № 31. P. 16400. https://doi.org/10.1016/j.ijhydene.2019.04.252
  20. Huang Z.-H., Liu G., Kang F. // ACS Appl. Mater. Interfaces. 2012. V. 4. P. 4942. https://doi.org/10.1021/am3013104
  21. Vu H.T., Tran L.T., Le G.H. et al. // Vietnam J. Chem. 2019. V. 57. № 6. P. 681. https://doi.org/10.1002/vjch.201900055
  22. Wu Q., Liu Y., Jing H. et al. // Chem. Eng. J. 2020. V. 390. P. 124615. https://doi.org/10.1016/j.cej.2020.124615
  23. Sert E., Yılmaz E., Atalay F.S. // Anadolu University J. Sci. Technol. A. 2017. V. 18. № 5. P. 1107. https://doi.org/10.18038/aubtda.328791
  24. Chaturvedi G., Kaur A., Kansal S.K. // J. Phys. Chem. C. 2019. V. 123. № 27. P. 16857. https://doi.org/10.1021/acs.jpcc.9b04312
  25. Светогоров Р.Д. Свидетельство № 2018661057 на программу для ЭВМ “Diana – Diffraction Analyzer” от 31.08.2018.
  26. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. № 5. P. 1900184. https://doi.org/10.1002/crat.201900184
  27. Nguyen Q.K., Kuz’micheva G.M., Khramov E.V. et al. // Crystals. 2021. V. 11. P. 1281. https://doi.org/10.3390/cryst11111281
  28. Millange F., Guillou N., Walton R.I. et al. // Chem. Commun. 2008. V. 39. P. 4732. https://doi.org/10.1039/b809419e
  29. Wu L., Chaplais G., Xue M. et al. // RSC Adv. 2019. V. 9. № 4. P. 1918. https://doi.org/10.1039/c8ra08522f
  30. Ain Q.T., Haq S.H., Alshammari A. et al. // Beilstein J. Nanotechnol. 2019. V. 10. P. 901. https://doi.org/10.3762/bjnano.10.91
  31. Siburian R., Sihotang H., Lumban Raja S. et al. // Oriental J. Chem. 2018. V. 34. № 1. P. 182. https://doi.org/10.13005/ojc/340120
  32. Nivetha R., Kollu P., Chandar K. et al. // RSC Adv. 2019. V. 9. № 6. P. 3215. https://doi.org/10.1039/c8ra08208a
  33. Lis M.J., Caruzi B.B., Gil G.A. et al. // Polymers. 2019. V. 11. № 4. P. 713. https://doi.org/10.3390/polym11040713
  34. Свердлов Л.М., Ковнер М.А., Крайнов Е.П. Колебательные спектры многоатомных молекул. M.: Наука, 1970. 560 c.
  35. Quang T.T., Truong N.X., Minh T.H. et al. // Topics Catal. 2020. V. 63. № 11–14. P. 1227. https://doi.org/10.1007/s11244-020-01364-2
  36. Pham D.D., Pham N.H. // Adv. Mater. Sci. Eng. 2021. V. 2021. № 1. 5540344. https://doi.org/10.1155/2021/5540344
  37. Ameta R., Chohadia K.A., Jain A., Punjabi P.B. // Advanced Oxidation Processes for Waste Water Treatment. Academic Press, 2018. P. 49. https://doi.org/10.1016/b978-0-12-810499-6.00003-6
  38. Behravesh N., Younesi H., Bahramifar N. et al. // Ecotoxicol. Environ. Safety. 2024. V. 285. P. 117057. https://doi.org/10.1016/j.ecoenv.2024.117057

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme of synthesis of MIL-53(Fe)/GO and MIL-53(Fe) samples.

下载 (429KB)
3. Fig. 2. Diffraction patterns of experimental samples MIL-53(Fe)/GO (1), MIL-53(Fe)-I (2), MIL-53(Fe)-II (3) and theoretical bar chart of sample MIL-53(Fe) (recalculated to CuKα) from CCDC database #690316 (a). Solid arrows indicate reflections of impurity phase/phases, dashed arrows indicate reflections of graphene oxide. Diffraction pattern of graphene oxide (b). Schematic representation of change in shape of fragment of MIL-53(Fe)/GO framework (c).

下载 (264KB)
4. Fig. 3. XANES (a) and EXAFS spectra (b) at the K-edge of Fe absorption of samples MIL-53(Fe)/GO (1), MIL-53(Fe)-I (2), MIL-53(Fe)-II) (3) and standards FeO (4), α-Fe2O3 (5), γ-Fe2O3 (6), Fe (7).

下载 (283KB)
5. Fig. 4. FTIR spectra of MIL-53(Fe)-II (1) and MIL-53(Fe)/GO (2) samples.

下载 (221KB)
6. Fig. 5. SEM (a, b) and TEM images (c, d) of MIL-53(Fe)-II (a, c) and MIL-53(Fe)/GO (b, d) samples (arrows indicate MIL-53(Fe) nanoparticles); SEM image of the MIL-53(Fe)/GO composite with iron mapping (d).

下载 (668KB)
7. Fig. 6. Kinetic curves of photodegradation of RR195 dye: a – in the presence of H2O2 (1), MIL-53(Fe)/GO (2, 4) and MIL-53(Fe)-II (3) photocatalysts upon introduction of 0.4 ml of H2O2 (3, 4) into the photoreaction mixture and irradiation with visible light (1, 3, 4); b – at a volume of H2O2 introduced into the mixture of 0.2 (1), 0.4 (2), 0.6 ml (3); c – mixture pH 3 (1), 5.5 (2), 7.5 (3); d – initial concentration of RR195 150 (1), 125 (2), 100 ppm (3); d – stability of catalytic activity in the first (1), second (2) and third (3) photoreaction cycles.

下载 (403KB)

版权所有 © Russian Academy of Sciences, 2025