Investigation of photonic curing mechanisms of sol-gel zinc oxide films for flexible electronics

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Photoannealing is a technological method that allows replacing the final high-temperature treatment of metal oxide sol-gel films with a combination of soft heating and ultraviolet irradiation. It has been established that an increase in temperature during heat treatment of the sol deposited on the substrate leads to the conversion of zinc acetate into layered basic zinc acetate (LBZA), which is transformed into hydroxide Zn(OH)2, which passes into amorphous oxide ZnO. It is shown that when heated to 130°C, parallel irradiation of films with UV radiation promotes the direct transition of LBZA into oxide due to the effective removal of hydroxyl and acetate groups. When the temperature is increased to 140°C, UV irradiation of films loses its expediency, since both photoannealing and heat treatment lead to identical properties of the studied materials.

Texto integral

Acesso é fechado

Sobre autores

I. Pronin

Penza State University

Email: starosta07km1@mail.ru
Rússia, Penza

A. Komolov

Saint Petersburg State University

Email: starosta07km1@mail.ru
Rússia, St. Petersburg

Е. Lazneva

Saint Petersburg State University

Email: starosta07km1@mail.ru
Rússia, St. Petersburg

V. Moshnikov

Saint Petersburg Electrotechnical University

Email: starosta07km1@mail.ru
Rússia, St. Petersburg

A. Karmanov

Penza State University

Autor responsável pela correspondência
Email: starosta07km1@mail.ru
Rússia, Penza

N. Yakushova

Penza State University

Email: starosta07km1@mail.ru
Rússia, Penza

Bibliografia

  1. Korotcenkov G., Brinzari V., Schwank J. et al. // Sens. Actuators. B. 2001. V. 77. № 1–2. P. 244. https://doi.org/10.1016/S0925-4005(01)00741-9
  2. Waldman L.J., Haunert D.P., Carson J.D. et al. // ACS Omega. 2024. V. 9. № 27. P. 29732. https://doi.org/10.1021/acsomega.4c03288
  3. Ren X., Yang L., Cheng Q. et al. // J. Mater. Sci.: Mater. Electron. 2024. V. 35. № 3. P. 217. https://doi.org/10.1007/s10854-024-11949-2
  4. Kumar B.B., Tiwari P.K., Dubey S. et al. // Micro Nanostructures. 2022. V. 164. P. 107122. https://doi.org/10.1016/j.spmi.2021.107122
  5. Krishna M.S., Singh S., Batool M. et al. // Mater. Adv. 2023. V. 4. № 2. P. 320. https://doi.org/10.1039/D2MA00878E
  6. Yakimets I., MacKerron D., Giesen P. et al. // Adv. Mater. Res. 2010. V. 93. P. 5. https://doi.org/10.4028/www.scientific.net/AMR.93-94.5
  7. Lamanna L., Rizzi F., Guido F. et al. // Adv. Electron. Mater. 2019. V. 5. № 6. P. 1900095. https://doi.org/10.1002/aelm.201900095
  8. Kim Y.-H., Heo J.-S., Kim T.-H. et al. // Nature. 2012. V. 489. P. 128. https://doi.org/10.1038/nature11434
  9. Park J.W., Kang B.H., Kim H.J. // Adv. Funct. Mater. 2020. V. 30. № 20. P. 1904632. https://doi.org/10.1002/adfm.201904632
  10. Leppaniemi J., Eiroma K., Majumdar H. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 10. P. 8774. https://doi.org/10.1021/acsami.6b14654
  11. Pronin I.A., Plugin I.A., Kolosov D.A. et al. // Sens. Actuators. A. 2024. V. 377. P. 115707. https://doi.org/10.1016/j.sna.2024.115707
  12. Jaisutti R., Kim J., Park S.K. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 31. P. 20192. https://doi.org/10.1021/acsami.6b05724
  13. Dong Z., Wang J., Men J. et al. // Inorg. Chem. 2024. V. 63. № 12. P. 5709. https://doi.org/10.1021/acs.inorgchem.4c00178
  14. Subbiah A.S., Mathews N., Mhaisalkar S. et al. // ACS Energy. Lett. 2018. V. 3. № 7. P. 1482. https://doi.org/10.1021/acsenergylett.8b00692
  15. Lima A.H., Raeyani D., Sudmand S.A. et al. // Opt. Mater. 2024. V. 149. P. 115041. https://doi.org/10.1016/j.optmat.2024.115041
  16. Hsu J.W., Piper R.T. // J. Phys. D. 2024. V. 57. № 25. P. 252001. https://doi.org/10.1088/1361-6463/ad3560
  17. John R.A., Chien N.A., Shukla S.et al. // Chem. Mater. 2016. V. 28. № 22. P. 8305. https://doi.org/10.1021/acs.chemmater.6b03499
  18. Piper R.T., Xu W., Hsu J.W. // IEEE J. Photovolt. 2022. V. 12. № 3. P. 722. https://doi.org/10.1109/JPHOTOV.2022.3159395
  19. Tauc J. Amorphous and Liquid Semiconductors. Springer Science and Business Media, 2012. 441 p. https://doi.org/10.1007/978-1-4615-8705-7
  20. Song R.Q., Xu A.W., Deng B. et al. // Adv. Funct. Mater. 2007. V. 17. № 2. P. 296. https://doi.org/10.1002/adfm.200600024
  21. Wang Y., Li Y., Zhou Z. et al. // J. Nanoparticle Res. 2011. V. 13. P. 5193. https://doi.org/10.1007/s11051-011-0504-y
  22. Hosono E., Fujihara S., Kimura T. et al. // J. Colloid Interface Sci. 2004. V. 272. № 2. P. 391. https://doi.org/10.1016/j.jcis.2003.10.005
  23. Holzwarth U., Gibson N. // Nature Nanotechnol. 2011. V. 6. № 9. P. 534. https://doi.org/10.1038/nnano.2011.145
  24. Coleman V.A., Jagadish C. // Zinc Oxide Bulk, Thin Films and Nanostructures. Elsevier Science Ltd, 2006. Р. 1. https://doi.org/10.1016/B978-008044722-3/50001-4
  25. Pronin I.A., Averin I.A., Karmanov A.A et al. // Nanomaterials. 2022. V. 12. № 11. P. 1924. https://doi.org/10.3390/nano12111924
  26. Filippov I.A., Karmanov A.A., Yakushova N.D. et al. // Crystallography Reports. 2024. V. 69. № 7. Р. 1162. https://doi.org/10.1134/S106377452460162X
  27. Duchoslav J., Steinberger R., Arndt M. et al. // Corrosion Sci. 2014. V. 82. P. 356. https://doi.org/10.1016/j.corsci.2014.01.037
  28. Liang M.K., Limo M.J., Sola-Rabada A. et al. // Chem. Mater. 2014. V. 26. № 14. P. 4119. https://doi.org/10.1021/cm501096p
  29. Frankcombe T.J., Liu Y. // Chem. Mater. 2023. V. 35. № 14. P. 5468. https://doi.org/10.1021/acs.chemmater.3c00801

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Diffraction patterns of zinc oxide sol-gel film samples. The inset shows the crystalline structure of LBZA.

Baixar (149KB)
3. Fig. 2. Absorption spectra of samples in Tautz coordinates after thermal (1) and combined (2) treatment at a temperature of 120 (a), 130 (b) and 140°C (c).

Baixar (169KB)
4. Fig. 3. XPS spectra of Zn2p (a) and O1s (b) samples.

Baixar (298KB)
5. Fig. 4. XPS spectrum of C1s samples.

Baixar (183KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025