Polycrystalline methylammonium-lead bromide perovskite films for photonic metasurfaces

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Polycrystalline films of organo-inorganic perovskite semiconductors are promising as a foundation for creating functional optical metasurfaces. The requirements for film structural perfection, thickness uniformity, and defect-free characteristics are much more stringent compared to perovskite films for photovoltaics. This work presents the results of searching for optimal conditions for one-step synthesis of lead methylammonium bromide films using centrifugation, and describes the successful fabrication of subwavelength optical gratings from these films through focused ion beam processing. The measured spectra of light transmission through the gratings demonstrated their excellent optical quality and confirmed the possibility of creating semiconductor photon metasurfaces with submicrometer periodicity and high-Q dielectric resonances.

Texto integral

Acesso é fechado

Sobre autores

G. Yurasik

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Autor responsável pela correspondência
Email: yurasik.georgy@yandex.ru
Rússia, Moscow

I. Kasyanova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: yurasik.georgy@yandex.ru
Rússia, Moscow

V. Artemov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: yurasik.georgy@yandex.ru
Rússia, Moscow

A. Ezhov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”;
M.V. Lomonosov Moscow State University, Faculty of Physics

Email: yurasik.georgy@yandex.ru
Rússia, Moscow; Moscow

I. Pavlov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: yurasik.georgy@yandex.ru
Rússia, Moscow

A. Antonov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: yurasik.georgy@yandex.ru
Rússia, Moscow

Guankui Long

School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University

Email: yurasik.georgy@yandex.ru
República da China, Tianjin

M. Gorkunov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”; National Research Nuclear University “MEPhI”

Email: yurasik.georgy@yandex.ru
Rússia, Moscow; Moscow

Bibliografia

  1. Kim J.Y., Lee J.-W., Jung H.S.et al. // Chem. Rev. 2020. V. 120. № 15. P. 7867. https://doi.org/10.1021/acs.chemrev.0c00107
  2. Kovalenko M.V., Protesescu L., Bodnarchuk M.I. // Science. 2017. V. 358. № 6364. P. 745. https://doi.org/10.1126/science.aam7093
  3. Berestennikov A.S., Voroshilov P.M., Makarov S.V., Kivshar Y.S. // Appl. Phys. Rev. 2019. V. 6. № 3. P. 031307. https://doi.org/10.1063/1.5107449
  4. Xiao M., Huang F., Huang W. et al. // Ang. Chem. Int. Ed. 2014. V. 53. № 37. P. 9898. https://doi.org/10.1002/anie.201405334
  5. Swain B.S., Lee J. // Physica E. 2021. V. 126. P. 114420. https://doi.org/10.1016/j.physe.2020.114420
  6. Long G., Adamo G., Tian J. et al. // Nat. Commun. 2022. V. 13. № 1. P. 1551. https://doi.org/10.1038/s41467-022-29253-0
  7. Saidaminov M.I., Abdelhady A.L., Murali B. et al. // Nat. Commun. 2015. V. 6. № 1. P. 7586. https://doi.org/10.1038/ncomms8586
  8. Gorkunov M.V., Mamonova A.V., Kasyanova I.V. et al. // Nanophotonics. 2022. V. 11. № 17. P. 3901. https://doi.org/10.1515/nanoph-2022-0091
  9. Stöhr J., Samant M.G., Cossy-Favre A. et al. // Macromolecules. 1998. V. 31. № 6. P. 1942. https://doi.org/10.1021/ma9711708
  10. Shen H., Nan R., Jian Z., Li X. // J. Mater. Sci. 2019. V. 54. № 17. P. 11596. https://doi.org/10.1007/s10853-019-03710-6
  11. Beadie G., Brindza M., Flynn R.A. et al. // Appl. Opt. 2015. V. 54. № 31. P. F139. https://doi.org/10.1364/AO.54.00F139
  12. Ishteev A., Konstantinova K., Ermolaev G. et al. // J. Mater. Chem. C. 2022. V. 10. № 15. P. 5821. https://doi.org/10.1039/D2TC00128D
  13. König T.A.F., Ledin P.A., Kerszulis J. et al. // ACS Nano. 2014. V. 8. № 6. P. 6182. https://doi.org/10.1021/nn501601e
  14. Rubin M. // Sol. En. Mater. 1985. V. 12. № 4. P. 275. https://doi.org/10.1016/0165-1633(85)90052-8
  15. Elliott R.J. // Phys. Rev. 1957. V. 108. № 6. P. 1384. https://doi.org/10.1103/PhysRev.108.1384
  16. Ruf F., Aygüler M.F., Giesbrecht N. et al. // APL Maters. 2019. V. 7. № 3. P. 031113. https://doi.org/10.1063/1.5083792
  17. Kühner L., Wendisch F.J., Antonov A.A. et al. // Light Sci. Appl. 2023. V. 12. № 1. P. 250. https://doi.org/10.1038/s41377-023-01295-z
  18. Rubanov S., Munroe P.R. // J. Microsc. 2004. V. 214. № 3. P. 213. https://doi.org/10.1111/j.0022-2720.2004.01327.x
  19. Gorkunov M.V., Rogov O.Y., Kondratov A.V. et al. // Sci. Rep. 2018. V. 8. № 1. P. 11623. https://doi.org/10.1038/s41598-018-29977-4
  20. Koshelev K., Kivshar Y. // ACS Photonics. 2021. V. 8. № 1. P. 102. https://doi.org/10.1021/acsphotonics.0c01315

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Dependence of the average thickness of MAPbBr3 films obtained at optimal times of antisolvent addition on the rotation speed of the glass substrate.

Baixar (47KB)
3. Fig. 2. Optical images of MAPbBr3 films prepared at a centrifuge speed of 4400 rpm, a temperature of 22°C and different antisolvent addition times τ = 2, 4, 5, 6 s and ∞ (antisolvent was not added).

Baixar (234KB)
4. Fig. 3. SEM images of cross-sections of MAPbBr3 films deposited on a glass substrate with an ITO layer, cleaned by ultrasonic treatment (a), air plasma (b), and coated with a thin polyimide film (c).

Baixar (142KB)
5. Fig. 4. Diffraction patterns of MAPbBr3 powder (1) and polycrystalline film (2).

Baixar (61KB)
6. Fig. 5. Structure of test gratings created by focused ion beam etching of parallel slits with increasing irradiation time: SEM image of a cross section (a), dark-field STEM image of a section (b), distribution maps of bromine and gallium atoms (c) and only gallium (d), obtained by energy-dispersive X-ray spectroscopy.

Baixar (297KB)
7. Fig. 6. SEM image of a subwavelength grating created by focused ion beam etching of parallel slits in a MAPbBr3 film with a period of 400 nm: a general view of the structure in the form of a square with a side of 80 μm and an image of its fragment obtained at higher magnification (insert).

Baixar (263KB)
8. Fig. 7. Optical properties of the MAPbBr3 film (a) and the subwavelength grating created by a focused ion beam by etching parallel slits with a period of 400 nm in it (b): simulated (solid lines) and measured (dots) transmission spectra of light linearly polarized across the slits. On the right are diagrams of a flat film and an elementary cell of the subwavelength grating, respectively.

Baixar (294KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024