Computer simulation of AgI|Si3O6 complex nanocomposites in single-wall carbon nanotubes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The method of molecular dynamics has been used to simulate heteronanostructures formed when silver iodide and silicon oxide nanoparticles are filling single-walled carbon nanotubes of the “armchair” type (12,12). The results of computer modeling show that stable nanostructured “internal nanocomposites” with AgI inclusions and silicon oxide clusters of various configurations can be formed in such tubes. Si3O6 clusters of linear and planar types have varying degrees of influence on the mobility of silver ions in the studied complex heteronanostructures of AgI|Si3O6@SWCNT.

Full Text

Restricted Access

About the authors

А. V. Petrov

St.-Petersburg State University

Author for correspondence.
Email: a.petrov@spbu.ru

Институт химии

Russian Federation, St-Petersburg

I. V. Murin

St.-Petersburg State University

Email: a.petrov@spbu.ru

Институт химии

Russian Federation, St-Petersburg

A. K. Ivanov-Schitz

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: a.petrov@spbu.ru
Russian Federation, Moscow

References

  1. Mekuye B., Abera B. // Nano Select. 2023. V. 4. P. 486. https://doi.org/10.1002/nano.202300038
  2. Baig N., Kammakakam I., Falath W. // Mater. Adv. 2021. V. 2. P. 1821. https://doi.org/ 10.1039/d0ma00807a
  3. Saleh H.M., Hassan A.I. // Sustainability. 2023. V. 15. № 14. P. 10891. https://doi.org/10.3390/su151410891
  4. Rizvi M., Gerengi H., Gupta P. // ACS Symp. Ser. 2022. V. 1418. P. 1. https://doi.org/10.1021/bk-2022-1418.ch001
  5. Rao R., Pint C.L., Islam A.E. et al. // ACS Nano. 2018. V. 12. P. 11756. https://doi.org/10.1021/acsnano.8b06511
  6. Zhang Y., Rhee K.Y., Hui D. et al. // Compos. B. Eng. 2018. V. 143. P. 19. https://doi.org/10.1016/j.compositesb.2018.01.028
  7. Jadoun S., Chauhan N.P.S., Chinnam S. et al. // Biomedical Materials Devices. 2023. V. 1. P. 351. https://doi.org/10.1007/s44174-022-00009-0
  8. Barbaros I., Yang Y., Safaei B. et al. // Nanotechnol. Rev. 2022. V. 11. P. 321. https://doi.org/10.1515/ntrev-2022-0017
  9. Ilie A., Crampin S., Karlsson L., Wilson M. // Nano Res. 2012. V. 5. P. 833. https://doi.org/10.1007/s12274-012-0267-5
  10. Eatemadi M., Daraee H., Karimkhanloo H. et al. // Nanoscale Res. Let. 2014. V. 9. P. 393. https://doi.org/10.1186/1556-276X-9-393
  11. Rakhi R.B. // Nanocarbon and its Composites / Eds. Khan A. et al. Woodhead Publishing, 2019. P. 489. https://doi.org/10.1016/B978-0-08-102509-3.00016-X
  12. Sandoval S., Tobias G., Flahaut E. // Inorganica Chim. Acta. 2019. V. 492. P. 66. https://doi.org/10.1016/j.ica.2019.04.004
  13. Ates M., Eker A.A., Eker B. // J. Adhesion Sci. Technol. 2017. V. 31. P. 1. https://doi.org/10.1080/01694243.2017.1295625
  14. Poudel Y.R., Li W. // Mater. Today Phys. 2018. V. 7. P. 74. https://doi.org/10.1016/j.mtphys.2018.10.002
  15. Kharlamova M.V., Kramberger C. // Nanomaterials. 2021. V. 11. P. 2863. https://doi.org/10.3390/nano11112863
  16. Li L., Yang H., Zhou D. et al. // J. Nanomater. 2014. V. 2014. Art. 187891. https://doi.org/10.1155/2014/187891
  17. Nwanno C.E., Li W. // Nano Res. 2023. V. 16. P. 12384. https://doi.org/10.1007/s12274-023-6006-2
  18. Xiong J.Z., Yang Z.C., Guo X.L. et al. // Tungsten. 2024. V. 6. P. 174. https://doi.org/10.1007/s42864-022-00177-y
  19. Zhang D., Ye Z., Liu Z. et al. // Energy Storage Sci. Technol. 2023. V. 12. P. 2095. https://doi.org/10.19799/j.cnki.2095-4239.2023.0178
  20. Hou Z.-d., Gao Y.-y., Zhang Y. et al. // New Carbon Mater. 2023. V. 38. P. 230. https://doi.org/10.1016/S1872-5805(23)60725-5
  21. Thauer E., Ottmann A., Schneider P. et al. // Molecules. 2020. V. 25. P. 1064. https://doi.org/10.3390/molecules25051064
  22. Babkin A.V., Kubarkov A.V., Drozhzhin O.A. et al. // Dokl. Chem. 2023. V. 508. P. 1. https://doi.org/10.1134/S001250082360013X
  23. Enyashin A.N. // Comput. Mater. Discovery. 2018. P. 352. https://doi.org/10.1039/9781788010122-00352
  24. Shunaev V.V., Petrunin A.A., Zhan H. et al. // Materials. 2023. V. 16. P. 3270. https://doi.org/10.3390/ma16083270.
  25. Zare Y., Yop Rhee K., Park S.-J. // Results Phys. 2019. V. 15. P. 102562. https://doi.org/10.1016/j.rinp.2019.102562
  26. Vivanco-Benavides L.E., Martínez-González C.L., Mercado-Zúñiga C. et al. // Comput. Mater. Sci. 2022. V. 201. P. 110939. https://doi.org/10.1016/j.commatsci.2021.110939
  27. Eliseev A.A., Yashina L.V., Brzhezinskaya M.M. et al. // Carbon. 2010. V. 48. P. 2708. https://doi.org/10.1016/j.carbon.2010.02.037
  28. Baldoni M., Leoni S., Sgamellott A.I. et al. // Small. 2007. V. 3. P. 1730. https://doi.org/10.1002/smll.200700296
  29. Kumar S., Nehra M., Kedia D. et al. // Prog. Energy Combust. Sci. 2018. V. 64. P. 219. https://doi.org/10.1016/j.pecs.2017.10.005
  30. Готлиб И.Ю., Иванов-Шиц А.К., Мурин И.В. и др. // Неорган. матер. 2010. Т. 46. С. 1509.
  31. Gotlib Yu., Ivanov-Schitz A.K., Murin I.V. et al. // Solid State Ionics. 2011. V. 188. P. 6. https://doi.org/10.1016/j.ssi.2010.11.020
  32. Готлиб И.Ю., Иванов-Шиц А.К., Мурин И.В. и др. // ФТТ. 2011. Т. 53. С. 2256.
  33. Gotlib I.Yu., Ivanov-Schitz A.K., Murin I.V. et al. // J. Phys. Chem. C. 2012. V. 116. P. 19554. https://doi.org/10.1021/jp305518t
  34. Готлиб И.Ю., Иванов-Шиц А.К., Мурин И.В. и др. // ФТТ. 2014. Т. 56. № 7. С. 1420.
  35. Уваров Н.Ф. Композиционные твердые электролиты. Новосибирск: Изд-во СО РАН. 2008. 258 с.
  36. Petrov A.V., Salamatov M.S., Ivanov-Schitz A.K. et al. // Ionics. 2021. V. 27. P. 1255. https://doi.org/10.1007/s11581-020-03710-6
  37. Петров А.В., Мурин И.В., Иванов-Шиц А.К. // Журн. общ. химии. 2017. Т. 87. C. 1062.
  38. Mekky H. Preprint. https://doi.org/10.21203/rs.3.rs-3951310/v1
  39. Rappé A.K., Casewit C.J., Colwell K.S. et al. // J. Am. Chem. Soc. 1992. V. 114. P. 10024. https://doi.org/10.1021/ja00051a040

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Bond lengths and charge states of the linear (a) and planar (b) forms of Si3O6 nanoparticles.

Download (147KB)
3. Fig. 2. Longitudinal (initial (a) and final (b) states) and cross-sections (c–d) of SWCNT filled with silver iodide and linear Si3O6 nanoparticles. Calculations at 900 K; cross-sections represent a layer 12–15 Å thick; numbers in Fig. b indicate cross-sections in Fig. c–d.

Download (699KB)
4. Fig. 3. Longitudinal (initial (a) and final (b) states) and transverse (c–d) sections of SWCNT filled with silver iodide and planar Si3O6 nanoparticles. Calculations at 900 K; transverse “sections” represent a layer with a thickness of 12–15 Å; numbers in Fig. b indicate sections in Fig. c–d.

Download (656KB)
5. Fig. 4. RPCF of Ag–I (1), I–I (2) and Ag–Ag (3) pairs in tubes with linear (a) and planar (b) nanoclusters at 900 K.

Download (117KB)
6. Fig. 5. Time dependences of the SCS of ions in tubes filled with Si3O6 nanoparticles of planar (1 – Ag, 3 – I, 4 – Si) and linear (2 – Ag, 5 – I, 6 – Si) forms (at 900 K).

Download (107KB)
7. Fig. 6. Diffusion of silver and iodine ions in tubes: ∎ – Ag in SWCNT with a linear Si3O6 cluster, □ – I in SWCNT with a linear Si3O6 cluster, ● – Ag in SWCNT with a planar Si3O6 cluster, ○ – I in SWCNT with a linear Si3O6 cluster, ☆ – Ag in SWCNT (11,11) [31], ★ – I in SWCNT (11,11) [31].

Download (78KB)

Copyright (c) 2025 Russian Academy of Sciences