ZnO microtubes: formation mechanism and whispering-gallery mode lasing
- Authors: Tarasov А.P.1, Zadorozhnaya L.A.1, Nabatov B.V.1, Kanevsky V.M.1
-
Affiliations:
- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
- Issue: Vol 70, No 1 (2025)
- Pages: 35-41
- Section: ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ
- URL: https://rjsvd.com/0023-4761/article/view/686176
- DOI: https://doi.org/10.31857/S0023476125010058
- EDN: https://elibrary.ru/ITUTWB
- ID: 686176
Cite item
Abstract
The luminescent and laser properties of ZnO microtubes synthesized by a modified thermal evaporation method were studied using photoluminescence spectroscopy. It was shown that whispering gallery modes are responsible for lasing in the near UV range. The possibility of achieving low lasing thresholds (down to ~ 8 kW/cm2) and high optical quality factors (over 3900) was demonstrated. A mechanism for the formation of such microcrystals was proposed, based on the assumption of simultaneous growth and etching along the [0001] crystallographic direction.
Full Text

About the authors
А. P. Tarasov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Author for correspondence.
Email: tarasov.a@crys.ras.ru
Russian Federation, Moscow
L. A. Zadorozhnaya
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: tarasov.a@crys.ras.ru
Russian Federation, Moscow
B. V. Nabatov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: tarasov.a@crys.ras.ru
Russian Federation, Moscow
V. M. Kanevsky
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: tarasov.a@crys.ras.ru
Russian Federation, Moscow
References
- Morkoc H., Ozgur U. Zinc oxide: fundamentals, materials and device technology. Weinheim: Wiley-VCH, 2009.
- Sharma D.K., Shukla S., Sharma K.K., Kumar V. // Mater. Today. 2022. V. 49. P. 3028. https://doi.org/10.1016/j.matpr.2020.10.238
- Klingshirn C.F. Semiconductor Optics. Berlin: Springer, 2012.
- Srivastava V., Gusain D., Sharma Y.C. // Ceram. Int. 2013. V. 39. P. 9803. https://doi.org/10.1016/j.ceramint.2013.04.110
- Oprea O., Andronescu E., Ficai D. et al. // Curr. Org. Chem. 2014. V. 18. P. 192.
- Uikey P., Vishwakarma K. // Int. J. Emerg. Tech. Comp. Sci. Electron. 2016. V. 21. P. 239.
- Di Mauro A., Fragalà M.E., Privitera V., Impellizzeri G. // Mater. Sci. Semicond. Process. 2017. V. 69. P. 44. https://doi.org/10.1016/j.mssp.2017.03.029
- Тарасов А.П., Веневцев И.Д., Муслимов А.Э. и др. // Квантовая электроника. 2021. Т. 51. С. 366.
- Znaidi L., Illia G.S, Benyahia S. et al. // Thin Solid Films. 2003. V. 428. P. 257. https://doi.org/10.1016/S0040-6090(02)01219-1
- Dong H., Zhou B., Li J. et al. // J. Materiomics. 2017. V. 3. P. 255. https://doi.org/10.1016/j.jmat.2017.06.001
- Tashiro A., Adachi Y., Uchino T. // J. Appl. Phys. 2023. V. 133. P. 221101. https://doi.org/10.1063/5.0142719
- Xu C., Dai J., Zhu G. et al. // Las. Photon. Rev. 2014. V. 8. P. 469. https://doi.org/10.1002/lpor.20130012
- Yang Y.D., Tang M., Wang F.L. et al. // Photonics Res. 2019. V. 7. P. 594. https://doi.org/10.1364/PRJ.7.000594
- Chen R., Ling B., Sun X.W., Sun H.D. // Adv. Mater. 2011. V. 23. P. 2199. https://doi.org/10.1002/adma.201100423
- Michalsky T., Wille M., Dietrich C.P. et al. // Appl. Phys. Lett. 2014. V. 105. P. 211106. https://doi.org/10.1063/1.4902898
- Qin F., Xu C., Lei D.Y. et al. // ACS Photonics. 2018. V. 5. P. 2313. https://doi.org/10.1021/acsphotonics.8b00128
- Tarasov A.P., Muslimov A.E., Kanevsky V.M. // Photonics. 2022. V. 9. P. 871. https://doi.org/10.3390/photonics9110871
- Тарасов А.П., Задорожная Л.А., Муслимов А.Э. и др. // Письма в ЖЭТФ. 2021. Т. 114. С. 596. https://doi.org/10.31857/S1234567821210035
- Тарасов А.П., Лавриков А.С., Задорожная Л.А., Каневский В.М. // Письма в ЖЭТФ. 2022. Т. 115. С. 554. https://doi.org/10.31857/S1234567822090026
- Tarasov A.P., Zadorozhnaya L.A., Kanevsky V.M. // J. Appl. Phys. 2024. V. 136. P. 073102. https://doi.org/10.1063/5.0214420
- Li L.E., Demianets L.N. // Opt. Mater. 2008. V. 30. P. 1074. https://doi.org/10.1016/j.optmat.2007.05.013
- Демьянец Л.Н., Ли Л.Е., Лавриков А.С., Никитин С.В. // Кристаллография. 2010. Т. 55. С. 149.
- Zadorozhnaya L.A., Tarasov A.P., Lavrikov A.S., Kanevsky V.M. // Comp. Opt. 2024. V. 48. P. 696. https://doi.org/10.18287/2412-6179-CO-1414
- Dong H., Sun L., Xie W. et al. // J. Phys. Chem. C. 2010. V. 114. P. 17369. https://doi.org/10.1021/jp1047908
- Тарасов А.П., Задорожная Л.А., Каневский В.М. // Письма в ЖЭТФ. 2024. Т. 119. С. 875. https://dx.doi.org/10.31857/S1234567824120024
- Wagner R.S. // J. Crystal Growth. 1968. V. 3/4. P. 159.
- Kaldis E. // Crystal Growth and Characterization. Amsterdam: North Holland, 1975.
- Sharma R.B. // J. Appl. Phys. 1970. V. 41. P. 1866. https://doi.org/10.1063/1.1659122
- Tarasov A.P., Muslimov A.E., Kanevsky V.M. // Materials. 2022. V. 15. P. 8723. https://doi.org/10.3390/ma15248723
- Tarasov A.P., Ismailov A.M., Gadzhiev M.K. et al. // Photonics. 2023. V. 10. P. 1354. https://doi.org/10.3390/photonics10121354
- Ozgur U., Alivov Y.I., Liu C. et al. // J. Appl. Phys. 2005. V. 98. P. 41301. https://doi.org/10.1063/1.1992666
- Ghosh M., Ningthoujam R.S., Vatsa R.K. et al. // J. Appl. Phys. 2011. V. 110. P. 054309. https://doi.org/10.1063/1.3632059
- Zhang Z., Yates Jr. J.T. // Chem. Rev. 2012. V. 112. P. 5520. https://doi.org/10.1021/cr3000626
- Guo B., Qiu Z.R., Wong K.S. // Appl. Phys. Lett. 2003. V. 82. P. 2290. https://doi.org/10.1063/1.1566482
- Dai J., Xu C.X., Wu P. et al. // Appl. Phys. Lett. 2010. V. 97. P. 011101. https://doi.org/10.1063/1.3460281
- Тарасов А.П., Брискина Ч.М., Маркушев В.М. и др. // Письма в ЖЭТФ. 2019. Т. 110. С. 750. https://doi.org/10.1134/S0370274X19230073
- Zimmler M.A., Bao J., Capasso F. et al. // Appl. Phys. Lett. 2008. V. 93. P. 051101. https://doi.org/10.1063/1.2965797
- Czekalla C., Sturm C., Schmidt-Grund R. et al. // Appl. Phys. Lett. 2008. V. 92. P. 241102. https://doi.org/10.1063/1.2946660
- Wiersig J. // Phys. Rev. A. 2003. V. 67. P. 023807. https://doi.org/10.1103/PhysRevA.67.023807
- Liu J., Lee S., Ahn Y. et al. // Appl. Phys. Lett. 2008. V. 92. P. 263102. https://doi.org/10.1063/1.2952763
Supplementary files
