Features of the Synthesis of Few-Layer Phosphorene Structures During Plasma Electrochemical Cleavage of Black Phosphorus
- 作者: Kochergin V.K.1, Manzhos R.A.1, Komarova N.S.1, Kotkin A.S.1, Krivenko A.G.1, Krushinskaya I.N.2, Pelmenyov A.A.2
 - 
							隶属关系: 
							
- Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences
 - Branch of N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
 
 - 期: 卷 58, 编号 3 (2024)
 - 页面: 216-220
 - 栏目: PLASMA CHEMISTRY
 - URL: https://rjsvd.com/0023-1193/article/view/661347
 - DOI: https://doi.org/10.31857/S0023119324030069
 - EDN: https://elibrary.ru/UUGJUA
 - ID: 661347
 
如何引用文章
详细
A comparative study of the emission spectra of cathode electrolysis plasma during plasma electrochemical cleavage of black phosphorus and graphite under maximally identical experimental conditions has been carried out. A significantly lower concentration of active intermediates (OH radicals and O atoms) in the electrolysis plasma during the cleavafe of black phosphorus was found compared with a graphite electrode. It is assumed that this effect is due to a significantly higher rate of interaction of these intermediates with synthesized phosphorene structures than with graphene-like particles. This is confirmed by the detection of a much higher oxygen content in the products of black phosphorus cleavage than in synthesized carbon nanoparticles.
全文:
作者简介
V. Kochergin
Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences
							编辑信件的主要联系方式.
							Email: kochergin@icp.ac.ru
				                					                																			                												                	俄罗斯联邦, 							Chernogolovka						
R. Manzhos
Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences
														Email: kochergin@icp.ac.ru
				                					                																			                												                	俄罗斯联邦, 							Chernogolovka						
N. Komarova
Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences
														Email: kochergin@icp.ac.ru
				                					                																			                												                	俄罗斯联邦, 							Chernogolovka						
A. Kotkin
Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences
														Email: kochergin@icp.ac.ru
				                					                																			                												                	俄罗斯联邦, 							Chernogolovka						
A. Krivenko
Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences
														Email: kochergin@icp.ac.ru
				                					                																			                												                	俄罗斯联邦, 							Chernogolovka						
I. Krushinskaya
Branch of N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
														Email: kochergin@icp.ac.ru
				                					                																			                												                	俄罗斯联邦, 							Chernogolovka						
A. Pelmenyov
Branch of N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
														Email: kochergin@icp.ac.ru
				                					                																			                												                	俄罗斯联邦, 							Chernogolovka						
参考
- Tiouitchi G., El Manjli F., Mounkachi O. et al. // Jordan J. Phys. 2020. V. 13. P. 149.
 - Zhang Y., Jiang Q., Lang P. et al. // J. Alloys Compd. 2021. V. 850. P. 156580.
 - Goswami A., Gawande M.B. // Front. Chem. Sci. Eng. 2019. V. 13. P. 296.
 - Shu C., Zhou J., Jia Z. et al. // Chem. Eur. J. 2022, V. 28. P. e202200857.
 - Srivastava R., Nouseen S., Chattopadhyay J. et al. // Energy Technol. 2021. V. 9. P. 2000741.
 - Valappi M.O., Alwarappan S., Pillai V.K. // Nanoscale. 2022. V. 14. P. 1037.
 - Xue X-X., Shen S., Jiang X. et al. // J. Phys. Chem. Lett. 2019. V. 10. P. 3440.
 - Wang Y., He M., Ma S., Yang C. et al. // J. Phys. Chem. Lett. 2020. V. 11. P. 2708.
 - Kochergin V.K., Manzhos R.A., Komarova N.S. et al. // High Energ. Chem. 2022. V. 56. P. 487.
 - Krivenko A.G., Manzhos R.A., Kochergin V.K. et al. // High Energ. Chem. 2019. V. 53. P. 254.
 - Kramida A., Ralchenko Yu., Reader J., NIST ASD Team. NIST Atomic Spectra Database (ver. 5.9), https://physics.nist.gov/asd
 - Hubner K.P., Herzberg G. Molecular Spectra and Molecular Structure, V. IV: Constants of Diatomic Molecules. New York: Van Northland, 1979. parts 1, 2.
 - Очкин В.Н. Спектроскопия низкотемпературной плазмы. М.: Физматлит, 2006.
 - Бобровников С.М., Горлов Е.В., Жарков В.И., Сафьянов А.Д. // Оптика атмосферы и океана. 2022. Т. 35. № 8. С. 613.
 - Belkin P.N., Kusmanov S.A. // Surf. Eng. Appl. Electrochem. 2021. V. 57. №. 1. P. 19.
 - Dittrich K., Fuchs H. // J. Anal. Atom. Spectrom. 1990. V. 5. P. 39.
 - Ambrosi A., Bonanni A., Pumera M. // Nanoscale. 2011. V. 3. № 5. P. 2256.
 
补充文件
				
			
						
						
						
						
					





