Influence of non-thermal plasma of atmospheric pressure glow discharge on surface modification of maize seeds

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The influence of atmospheric pressure glow discharge on the surface modification of corn seeds has been studied. Short-term exposure of seeds to non-thermal plasma leads to a decrease in the contact angle and an increase in the free surface energy. Analysis by scanning electron microscopy showed that exposure of seeds to non-thermal plasma causes significant changes on the surface.

About the authors

B. V. Baldanov

Institute of Physical Materials Science SB RAS

Email: baibat@mail.ru
670031, Ulan-Ude city, 6 Sakhyanova str.

Ts. V. Ranzhurov

Institute of Physical Materials Science SB RAS

670031, Ulan-Ude city, 6 Sakhyanova str.

References

  1. USDA, 2020. World Corn Production 2019/2020 URL http://www.worldagriculturalproduction.com/crops/corn.aspx
  2. De Groot G. J. J. B, Hundt A., Murphy A. B., et al // Sci. Rep. 2018. V. 8. P. 1.
  3. Jiang J., He X., Li L. et al. // Plasma Sci Technol. 2014. V. 16. P. 54.
  4. Stolárik T., Henselová M., Martinka M. et al. // Plasma Chem. Plasma Process. 2015. V. 35. P. 659.
  5. Meng Y., Qu G., Wang T. et al. // Plasma Chem. Plasma Process. 2017. V. 37. P. 1105.
  6. Pérez-Pizá M.C., Prevosto L., Grijalba P. E. et al. // Heliyon. 2019. V. 5. e01495.
  7. Los A., Ziuzina D., Boehm D. et al. // Plasma Process. Polym. 2019. V. 16. P. 1.
  8. Lee Y., Lee Y. Y., Kim Y. S. et al. // J. Ginseng Res. 2021. V. 45. P. 519.
  9. Taheri S., Brodie G. I., Gupta D. et al. // Innov. Food Sci. Emerg. Technol. 2020. V. 66. P. 102488.
  10. Puligundla P., Kim J. W., Mok C. // Food Bioprocess. Technol. 2017. V. 10. P. 1093.
  11. Pechanova O., Pechan T. // Int. J. Mol. Sci. 2015. V. 16. P. 28429.
  12. Bormashenko E., Shapira Y., Grynyov R. et al. // J. Exp. Bot. 2015. V. 66. P. 4013.
  13. Volkov A. G., Hairston J. S., Patel D. et al. // Bioelectrochemistry. 2019. V. 128. P. 175.
  14. Khamsen N., Onwimol D., Teerakawanich N. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. P. 19268.
  15. Bormashenko E., Grynyov R., Bormashenko Y. et al. // Sci. Rep. 2012. V. 2. P. 741.
  16. Vajpayee M., Singh M., Ledwani L. // Mater. Today Proc. 2021. V. 43. P. 3250.
  17. Švubová R., Kyzek S., Medvecká V. et al. // Plasma Chem. Plasma Process. 2020. V. 40. P. 1221.
  18. Švubová R., Slováková L., Holubová L. et al. // Plants. 2021. V. 10. P. 177.
  19. Zahoranová A., Henselová M., Hudecová D. et al. // Plasma Chem. Plasma Process. 2016. V. 36. P. 397.
  20. Puaˇc N., Petrovi´c Z. L., Živkovi´c S. et al. // In Plasma Processes and Polymers; d’Agostino R., Favia P., Oehr C., Wertheimer. M.R., Eds.; Wiley-VCH: Weinheim. Germany. 2005. P. 193.
  21. Štˇepánová V., Slaví ˇcek P., Kelar J. et al. // Plasma Process. Polym. 2018. V. 15. P. 1700076.
  22. Baldanov B. B., Ranzhurov T. V. // Technical physics. 2014. V. 59. P. 621.
  23. Stalder A. F., Melchior T., Müller M. et al. // Colloids Surfaces A Physicochem Eng Asp. 2010. V. 364. № 1. P. 72.
  24. Deshmukh R. R., Shetty A. R. // Journal of Applied Polymer Science. 2008. V. 107. P. 3707.
  25. Dobrin D., Magureanu M., Mandache N. B. et al. // Innov. Food Sci. Emerg. Technol. 2015. V. 29. P. 255.
  26. Tong J., He R., Zhang X., et al. // Plasma Sci. Technol. 2014. V. 16. P. 260.
  27. Dhayal M., Lee S. Y., Par S. U. // Vacuum. 2006. V. 80. P. 499.
  28. Mitra A., Li Y. F., Kla¨mpfl T. G. et al. // Food Bioprocess Technol. 2014. V. 7. P. 645.
  29. Henselová M., Slováková Ľ., Martinka M. et al. // Biologia. 2012. V. 67. P. 490.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences