Validation of the methodology for measuring mass concentrations of chemical elements in blood by mass spectrometry method with inductively coupled plasma

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Introduction. Identification of beryllium, cobalt, arsenic, molybdenum, cadmium, tin, antimony, and lead levels in biological media is necessary for controlling health of both general population and production workers.Aim. To validate author’s methodology MUK 4.1.3230–14 due to its modification for measuring mass concentrations of beryllium, cobalt, arsenic, molybdenum, cadmium, tin, antimony, and lead in blood, which is not included into the certified area for the methodology application.Materials and methods. Measurements were accomplished using the Agilent 7900 quadrupole ICP mass spec instrument (Agilent Technologies, USA) equipped with the octopole reaction system (ORS). Blood samples were prepared by acid decomposition in closed tubes in the HotBlock heating system at +90 °C for 80 minutes until homogenization was reached. Results. Internal standards for each analyte were selected by experiments; calibration dependence was shown to have linearity; laboratory accuracy and precision were assessed. The following limits of detection (LOD) were established: beryllium, 0.0019 µg/L; cobalt, 0.00015 µg/L; arsenic, 0.0003 µg/L; molybdenum, 0.00059 µg/L; cadmium, 0.00015 µg/L; tin, 0.0006 µg/L, antimony, 0.00009 µg/L; lead, 0.0003 µg/L. The range of measurements in blood was 0.7–100 µg/l for beryllium with 15% inaccuracy; cobalt, 0.05–100 µg/L with 13% inaccuracy; arsenic, 0.1–1000 µg/L with 13% inaccuracy; molybdenum, 0.2–500 µg/L with 9% inaccuracy; cadmium, 0.02–100 µg/L with 9% inaccuracy; tin, 0.2–500 µg/L with 10% inaccuracy; antimony, 0.03–100 µg/L with 10% inaccuracy; lead, 0.1–1500 µg/L with 16% inaccuracy. Limitations. Methodology MUK 4.1.3230–14 is limited to the determination of 9 elements in the blood (vanadium, chromium, manganese, nickel, copper, zinc, selenium, strontium, thallium). It was necessary to prove the acceptability of the method for determining beryllium, cobalt, arsenic, molybdenum, cadmium, tin, antimony, and lead in blood.Conclusion. The validated methodology has been proven to be eligible for selective measurement of mass concentrations of beryllium, cobalt, arsenic, molybdenum, cadmium, tin, antimony, and lead in blood with acceptable analytical values simultaneously with chemical elements (vanadium, chromium, manganese, nickel, copper, zinc, selenium, strontium, and thallium) already covered by the methodology MUK 4.1.3230–14. Compliance with ethical standards. The study does not require the submission of the conclusion of the Biomedical Ethics Committee.Contributions: Nurislamova Т.V. – study concept and design; Stenno Е.V. – writing and editing the text; Nedoshitova А.V. – spectral analysis of samples; Veikhman G.А. – statistical data analysis, writing the text; Gileva К.О., Sukhikh Е.А., NIkolaeva А.Е. – sample preparation and data analysis. All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.Conflict of interest. The authors declare no conflict of interest.Funding. The study had no sponsorship.Received: April 21, 2025 / Revised: June 11, 2025 / Accepted: June 26, 2025 / Published: August 20, 2025

作者简介

Tatyana Nurislamova

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: nurtat@fcrisk.ru

Elena Stenno

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: stenno@fcrisk.ru

Anna Nedoshitova

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: nedoshitova@fcrisk.ru

Galina Veikhman

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: veikhman_ga@mail.ru

Ksenya Gileva

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: ksenimanilova@mail.ru

Ekaterina Sukhikh

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: suhihekaterina@mail.ru

Alena Nikolaeva

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: alena.nikolaeva95@yandex.ru

参考

  1. Скальный А.В., Рудаков И.А. Биоэлементы в медицине. М.: Оникс; 2004. https://elibrary.ru/wqrzft
  2. Авцын А.П., Жаворонков А.А., Риш М.А., Строчкова Л.С. Микроэлементозы человека. М.: Медицина; 1991.
  3. Элленхорн М.Дж. Медицинская токсикология: диагностика и лечение отравлений у человека. М.: Медицина; 2003.
  4. Hays S.M., Macey K., Poddalgoda D., Lu M., Nong A., Aylward L.L. Biomonitoring Equivalents for molybdenum. Regul. Toxicol. Pharmacol. 2016; 77: 223–9. https://doi.org/10.1016/j.yrtph.2016.03.004
  5. Землянова М.А., Зайцева Н.В., Степанков М.С., Игнатова А.М. Оценка потенциальной опасности наночастиц оксида молибдена (VI) для здоровья человека. Экология человека. 2022; 29(8): 563–75. https://doi.org/10.17816/humeco108248 https://elibrary.ru/kpztld
  6. Sundar S., Chakravarty J. Antimony toxicity. Int. J. Environ. Res. Public Health. 2010; 7(12): 4267–77. https://doi.org/10.3390/ijerph7124267
  7. Gerhardsson L., Brune D., Nordberg G.F., Wester P.O. Antimony in lung, liver and kidney tissue from deceased smelter workers. Scand. J. Work Environ. Health. 1982; 8(3): 201–8. https://doi.org/10.5271/sjweh.2475
  8. Wu C.C., Chen Y.C. Assessment of industrial antimony exposure and immunologic function for workers in Taiwan. Int. J. Environ. Res. Public Health. 2017; 14(7): 689. https://doi.org/10.3390/ijerph14070689
  9. Iavicoli I., Caroli S., Alimonti A., Petrucci F., Carelli G. Biomonitoring of a worker population exposed to low antimony trioxide levels. J. Trace Elem. Med. Biol. 2002; 16(1): 33–9. https://doi.org/10.1016/S0946-672X(02)80006-2
  10. Liao Y.H., Yu H.S., Ho C.K., Wu M.T., Yang C.Y., Chen J.R., et al. Biological monitoring of exposures to aluminium, gallium, indium, arsenic, and antimony in optoelectronic industry workers. J. Occup. Environ. Med. 2004; 46(9): 931–6. https://doi.org/10.1097/01.jom.0000137718.93558.b8
  11. Зайцева Н.В., Шур П.З., Кирьянов Д.А., Камалтдинов М.Р., Цинкер М.Ю. Методические подходы к оценке популяционного риска здоровью на основе эволюционных моделей. Здоровье населения и среда обитания – ЗНиСО. 2013; (1): 4–6. https://elibrary.ru/pxltgf
  12. Иваненко Н.Б., Ганеев А.А., Соловьев Н.Д., Москвин Л.Н. Определение микроэлементов в биологических жидкостях. Журнал аналитической химии. 2011; 66(9): 900–15. https://elibrary.ru/ocxgxv
  13. Маркова О.Л., Шилов В.В., Кузнецов А.В., Метелица Н.Д. Сравнительная оценка подходов к проблеме биомониторинга здоровья человека отечественных и зарубежных исследователей (обзор литературы). Гигиена и санитария. 2020; 99(6): 545–50. https://doi.org/10.47470/0016-9900-2020-99-6-545-550 https://elibrary.ru/qsgxrd
  14. odushkin I., Ödman F., Olofsson R., Axelsson M.D. Determination of 60 elements in whole blood by sector field inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2000; 15(8): 937–44. https://doi.org/10.1039/b003561k
  15. Иваненко Н.Б., Иваненко А.А., Соловьев Н.Д., Наволоцкий Д.В., Павлова О.В., Ганеев А.А. Определение Al, Be, Cd, Co, Cr, Mn, Ni, Pb, Se и Tl в цельной крови без предварительного разложения методом атомно-абсорбционной спектрометрии. Биомедицинская химия. 2014; 60(3): 378–88. https://doi.org/10.18097/pbmc20146003378 https://elibrary.ru/slbpvx
  16. Серегина И.Ф., Ланская С.Ю., Окина О.И., Большов М.А., Ляпунов С.М., Чугунова О.Л. и др. Определение химических элементов в биологических жидкостях и диагностических субстратах детей методом масс-спектрометрии с индуктивно связанной плазмой. Журнал аналитической химии. 2010; 65(9): 986–94. https://doi.org/10.1134/S1061934810090133 https://elibrary.ru/muyyyf
  17. Heitland P., Köster H.D. Biomonitoring of 37 trace elements in blood samples from inhabitants of northern Germany by ICP-MS. J. Trace Elem. Med. Biol. 2006; 20(4): 253–62. https://doi.org/10.1016/j.jtemb.2006.08.001
  18. Pino A., Amato A., Alimonti A., Mattei D., Bocca B. Human biomonitoring for metals in Italian urban adolescents: data from Latium Region. Int. J. Hyg. Environ. Health. 2012; 215(2): 185–90. https://doi.org/10.1016/j.ijheh.2011.07.015
  19. Bocca B., Forte G., Petrucci F., Senofonte O., Violante N., Alimonti A. Development of methods for the quantification of essential and toxic elements in human biomonitoring. Ann. Ist. Super Sanita. 2005; 41(2): 165–70.
  20. Goullé J.P., Mahieu L., Castermant J., Neveu N., Bonneau L., Lainé G., et al. Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair. Reference values. Forensic Sci. Int. 2005; 153(1): 39–44. https://doi.org/10.1016/j.forsciint.2005.04.020
  21. D’Ilio S., Violante N., Di Gregorio M., Senofonte O., Petrucci F. Simultaneous quantification of 17 trace elements in blood by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) equipped with a high-efficiency sample introduction system. Anal. Chim. Acta. 2006; 579(2): 202–8. https://doi.org/10.1016/j.aca.2006.07.027
  22. Голубкова Е.В., Комина И.Г., Чиканцева Е.И. Валидация и верификация методик измерений: мнения и взгляды. Заводская лаборатория. Диагностика материалов. 2023; 89(2–2): 77–80. https://doi.org/10.26896/1028-6861-2023-89-2-II-77-80 https://elibrary.ru/jniqeq
  23. Нежиховский Г.Р., Кадис Р.Л., ред. Валидация аналитических методик. Количественное описание неопределённости в аналитических измерениях. Руководства для лабораторий. СПб.: Профессия; 2016.
  24. Медведевских М.Ю., Крашенинина М.П., Сергеева А.С., Барановская В.Б. Валидация методик химического анализа: практический пример. Заводская лаборатория. Диагностика материалов. 2020; 86(8): 72–9. https://doi.org/10.26896/1028-6861-2020-86-8-72-79 https://elibrary.ru/jtaxgv
  25. Тиц Н.У. Клиническое руководство по лабораторным тестам. Пер. с англ. М.: ЮНИМЕД-пресс; 2003.
  26. Burtis C.A., Ashwood E.R., Bruns D.E., Tietz N.W. Tietz Textbook of Clinical Chemestry and Molecular Diagnostics. 4th ed. St. Louis, MO: Elsevier Saunders; 2006.
  27. Societa’Italiana Valori di Riferimento-Quarta lista dei Valori di Riferimento per elementi, Composti Organici e Loro Metaboliti-Edizione; 2011. Available at: https://sivr.it/documenti/sivr2011.pdf
  28. Reference data. Trace Elements in human biological material; 2014. Available at: https://alsglobal.se/media-se/pdf/information/reference_data_biomonitoring.pdf
  29. Боев В.М., Зеленина Л.В., Кудусова Л.Х., Кряжева Е.А., Зеленин Д.О. Гигиеническая оценка канцерогенного риска здоровью населения, ассоциированного с загрязнением депонирующих сред тяжелыми металлами. Анализ риска здоровью. 2022; (1): 17–26. https://doi.org/10.21668/health.risk/2022.1.02 https://elibrary.ru/pssyqm
  30. Cai L.M., Xu Z.C., Qi J.Y., Feng Z.Z., Xiang T.S. Assessment of exposure to heavy metals and health risks among residents near Tonglushan mine in Hubei, China. Chemosphere. 2015; 127: 127–35. https://doi.org/10.1016/j.chemosphere.2015.01.027
  31. Бахтерева Е.В., Лейдерман Е.Л., Плотко Э.Г., Рябкова Т.А. Оценка нейрофизиологических параметров состояния нервной системы у работающих в производстве цветных металлов. Анализ риска здоровью. 2023; (3): 156–62. https://doi.org/10.21668/health.risk/2023.3.15 https://elibrary.ru/fwbxzr

补充文件

附件文件
动作
1. JATS XML

版权所有 © , 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.