Генетическая характеристика серой горной кавказской пчелы Apis mellifera caucasica

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В данном исследовании приводятся результаты сравнительного генетического анализа пчел под- вида Apis mellifera caucasica с подвидами A. m. carnica и A. m. mellifera. Мы выполнили анализ полиморфизма девяти микросателлитных локусов (Ap243, 4a110, A24, A8, A113, A88, Ap049, A28 и A43) и установили гаплотипы на основе анализа нуклеотидной изменчивости митохондриаль- ного маркера tRNAleu-COII. Анализ генетической структуры трех подвидов медоносной пчелы, широко распространенных на территории России, показал значимый уровень их дифференци- ации даже при использовании небольшого набора микросателлитных локусов. Оценка распро- страненности гаплотипов tRNAleu-COII в трех исследуемых выборках показала, что для A. m. caucasica преобладающим гаплотипом является C2j.

Полный текст

Доступ закрыт

Об авторах

М. Д. Каскинова

Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук

Автор, ответственный за переписку.
Email: kaskinovamilyausha@mail.ru
Россия, Уфа, 450054

Л. Р. Гайфуллина

Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук

Email: kaskinovamilyausha@mail.ru
Россия, Уфа, 450054

Е. С. Салтыкова

Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук

Email: kaskinovamilyausha@mail.ru
Россия, Уфа, 450054

Список литературы

  1. Горбачев К.А. Кавказская серая горная пчела (Apis mellifera var. caucasica) и место ее среди других пчел. Тифлис: тип. Труд, 1916. 39 с.
  2. Алпатов В.В. Породы медоносной пчелы. Москва: Изд-во моск. об-ва испытателей природы, 1948. 183 с.
  3. Ruttner F. Biogeography and Taxonomy of Honeybees. Berlin: Springer, 1988. 291 p.
  4. Любимов Е.М., Сокольский С.С., Савушкина Л.Н., Бородачев А.В. Селекция пчел серой горной кавказской породы и производство продукции в пчелоразведенческом хозяйстве. Рязань: Изд-во Ряз. обл. тип., 2013. 192 с.
  5. Cridland J.M., Tsutsui N.D., Ramirez S.R. The complex demographic history and evolutionary origin of the western honey bee Apis mellifera // Genome Biol. Evol. 2017. V. 9. P. 457–472. https://doi.org/10.1093%2Fgbe%2Fevx009
  6. Momeni J., Parejo M., Nielsen R.O., Langa J., et al. Authoritative subspecies diagnosis tool for European honey bees based on ancestry informative SNPs // BMC Genomics. 2021. V. 22. № 101. https://doi.org/10.1186/s12864-021-07379-7
  7. Garnery L., Solignac M., Celebrano G., Cornuet J.-M. A simple test using restricted PCR-amplified mitochondrial DNA to study the genetic structure of Apis mellifera L. // Experientia. 1993. V. 49. P. 1016–1021. https://doi.org/10.1007/BF02125651
  8. Cornuet J.M., Garnery L. Mitochondrial DNA variability in honeybees and its phylogeographic implications // Apidologie. 1991. V. 22. P. 627–642.
  9. Susnik S., Kozmus P., Poklukar J., Meglic V. Molecular characterisation of indigenous Apis mellifera carnica in Slovenia // Apidologie. 2004. V. 35. P. 623–636. https://doi.org/10.1051/apido:2004061
  10. Alburaki M., Madella S., Lopez J., et al. Honey bee populations of the USA display restrictions in their mtDNA haplotype diversity // Frontiers in Genetics. 2023. V. 13. https://doi.org/10.3389/fgene.2022.1092121
  11. Earl D.A., vonHoldt B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method // Conservation Genetics Resources. 2012. V. 4(2). P. 359–361. https://doi.org/10.1007/s12686-011-9548-7
  12. Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study // Mol. Ecol. 2005. V. 14(8). P. 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  13. Nei M. Molecular еvolutionary пenetics // DNA Рolymorphism Within and Between Populations. N. Y.: Columbia Univ. Press, 1987. P. 254–285.
  14. Nikolova S.R., Bienkowska M., Gerula D., Ivanova E.N. Microsatellite DNA polymorphism in selectively controlled Apis mellifera carnica and Apis mellifera caucasica populations from Poland // Arch. Biol. Sci. 2015. V. 67(3). P. 889–894. https://doi.org/10.2298/ABS141102048N
  15. Tozkar C.O. Genetic structure of honey bee (Apis mellifera Linnaeus, 1758) subspecies based on tRNAleu-COX2 and ND5 regions of mtDNA // Applied Ecol. and Environ. Res. 2020. V. 18(2). https://doi.org/10.15666/aeer/1802_22692284
  16. Franck P., Garnery L., Celebrano G. et al. Hybrid origins of honeybees from Italy (Apis mellifera ligustica) and Sicily (A. m. sicula) // Mol. Ecol. 2000. V. 9. P. 907–921. https://doi.org/10.1046/j.1365-294x.2000.00945.x
  17. Carpenter M.H., Harpur B.A. Genetic past, present, and future of the honey bee (Apis mellifera) in the United States of America // Apidologie. 2021. V. 52. P. 63–79. https://doi.org/10.1007/s13592-020-00836-4
  18. Kaskinova M.D., Gaifullina L.R., Saltykova E.S. Haplotypes of the tRNAleu-COII mtDNA region in Russian Apis mellifera populations // Animals. 2023. V. 13. https://doi.org/10.3390/ani13142394
  19. Marcelino J., Braese C., Christmon K. et al. The movement of western honey bees (Apis mellifera L.) among U.S. States and territories: History, benefits, risks, and mitigation strategies // Front. Ecol. Evol. 2022. V. 10. https://doi.org/10.3389/fevo.2022.850600
  20. Collet T., Ferreira K., Arias M. et al. Genetic structure of Africanized honeybee populations (Apis mellifera L.) from Brazil and Uruguay viewed through mitochondrial DNA COI–COII patterns // Heredity. 2006. V. 97. P. 329–335. https://doi.org/10.1038/sj.hdy.6800875
  21. Oleksa A., Kusza S., Tofilski A. Mitochondrial DNA suggests the introduction of honeybees of african ancestry to East-Central Europe // Insects. 2021. V. 12. https://doi.org/10.3390/insects12050410
  22. Chavez-Galarza J., Lopez-Montanez R., Jimenez A. et al. Mitochondrial DNA variation in Peruvian honey bee (Apis mellifera L.) populations using the tRNAleu-cox2 intergenic region // Insects. 2021. V. 12. https://doi.org/10.3390/ insects12070641
  23. Tanasković M., Erić P., Patenković A. et al. MtDNA analysis indicates human-induced temporal changes of Serbian honey bees diversity // Insects. 2021. V. 12. https://doi.org/10.3390/insects12090767
  24. Salehi S., Nazemi-Rafie J. Discrimination of Iranian honeybee populations (Apis mellifera meda) from commercial subspecies of Apis mellifera L. using morphometric and genetic methods // J. of Asia-Pacific Entomology. 2020. № 23. P. 591–598. https://doi.org/10.1016/j.aspen.2020.04.009
  25. Chavez-Galarza J., Garnery L., Henriques D. et al. Mitochondrial DNA variation of Apis mellifera iberiensis: Further insights from a large scale study using sequence data of the tRNAleu-cox2 intergenic region // Apidologie. 2017. V. 48. P. 533–544.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Генетическая структура исследуемых выборок при К = 2 и К = 3.

Скачать (193KB)

© Российская академия наук, 2024