Ferromagnetic resonance and antiresonance in a composite material with cobalt nanoparticles

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The frequency and field dependences of the wave transmission and reflection coefficients of a composite material with cobalt nanoparticles in an opal matrix were measured at frequencies of 26–38 GHz. The phenomena of ferromagnetic resonance and antiresonance have been experimentally studied. The theoretical calculation of the dependences of the transmission and reflection coefficients on the magnetic field is performed. The specificity of antiresonance in a composite material has been revealed. The importance of taking into account the interference of waves in the nanocomposite is indicated. The field dependence of the depth of penetration of microwaves into the composite is calculated. Formulas for calculating the antiresonance field in a composite material are obtained.

全文:

受限制的访问

作者简介

O. Nemytova

Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: rin@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108

D. Perov

Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: rin@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108

E. Kuznetsov

Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: rin@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108

A. Rinkevich

Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: rin@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108

参考

  1. Ramprasad R., Zurcher P., Petras M., Miller M., Renaud P. Magnetic properties of metallic ferromagnetic nanoparticle composites // J. Appl. Phys. 2004. V. 96. P. 519–529.
  2. Розанов К.Н., Петров Д.А., Елсуков Е.П., Протасов А.В., Юровских А.С., Язовских К.А., Ломаева С.Ф. Влияние нанокристаллического состояния и электросопротивления порошков Fe и Fe75Si25, полученных методом высокоэнергетического размола, на частотные зависимости СВЧ материальных параметров // ФММ. 2016. Т. 117. № 6. С. 562–570.
  3. Gargama H., Thakur A.K., Chaturvedi S.K. Polyvinylidene fluoride/nanocrystalline iron composite materials for EMI shielding and absorption applications // J. Alloys Compd. 2016. V. 654. P. 209–215.
  4. Starostenko S.N., Rozanov K.N., Shiryaev A.O., Garanov V.A., Lagarkov A.N. Permeability of nickel determined from microwave constitutive parameters of composites filled with nickel powders // IEEE Trans. Magn. 2018. V. 54. No. 11. P. 2801005.
  5. Luis F., Petroff F., Torres J.M., García L.M., Bartolomé J., Carrey J., Vaurès A. Magnetic relaxation of interacting Co clusters: Crossover from two- to three-dimensional lattices // Phys. Rev. Lett. 2002. V. 88. No. 21. P. 217205.
  6. Zhang Y., Piao M., Zhang H., Zhang F., Chu J., Wang X., Shi H., Li C. Synthesis of mesoporous hexagonal cobalt nanosheets with low permittivity for enhancing microwave absorption performances // J. Magn. Magn. Mater. 2019. V. 486. P. 165272.
  7. Feng Y., Qiu T. Enhancement of electromagnetic and microwave absorbing properties of gas atomized Fe-50 wt % Ni alloy by shape modification // J. Magn. Magn. Mater. 2012. V. 324. P. 2528–2533.
  8. Yao Y., Zhang C., Fan Y., Zhan J. Preparation and microwave absorbing property of porous FeNi powders // Adv. Powder Technol. 2016. V. 27. No. 5. P. 2285–2290.
  9. Rinkevich A.B., Perov D.V., Ryabkov Yu.I. Transmission, reflection and dissipation of microwaves in magnetic composites with nanocrystalline Finemet‐type flakes // Materials. 2021. V. 14. P. 3499.
  10. Lagarkov A.N., Rozanov K.N. High-frequency behavior of magnetic composites // J. Magn. Magn. Mater. 2009. V. 321. P. 2082–2092.
  11. Sareni B., Krähenbühl L., Beroual A., Brosseau C. Complex effective permittivity of a lossy composite material // J. Appl. Phys. 1996. V. 80. P. 4560–4565.
  12. Mattei J.-L., Le Floc'h M. A numerical approach of the inner demagnetizing effects in soft magnetic composites // J. Magn. Magn. Mater. 2000. V. 215–216. P. 589–591.
  13. Chevalier A., Mattei J.-L., Le Floc'h M. Ferromagnetic resonance of isotropic heterogeneous magnetic materials: theory and experiments // J. Magn. Magn. Mater. 2000. V. 215–216. P. 66–68.
  14. Skomski R., Hadjipanayis G.C., Sellmyer D.J. Effective demagnetizing factors of complicated particle mixtures // IEEE Trans. Magn. 2007. V. 43. No. 6. P. 2956–2958.
  15. Beleggia M., De Graef M., Millev Y.T. The equivalent ellipsoid of a magnetized body // J. Phys. D: Appl. Phys. 2006. V. 39. P. 891–899.
  16. Shiryaev A.O., Rozanov K.N., Starostenko S.N., Bobrovskii S.Y., Osipov A.V., Petrov D.A. The bias effect on the frequency dispersion of microwave permeability of composites filled with metal films or flakes // J. Magn. Magn. Mater. 2019. V. 470. P. 139–142.
  17. Shiryaev A.O., Rozanov K.N., Vyzulin S.A., Kevraletin A.L., Syr’ev N.E., Vyzulin E.S., Lahderanta E., Maklakov S.A., Granovsky A.B. Magnetic resonances and microwave permeability in thin Fe films on flexible polymer substrates // J. Magn. Magn. Mater. 2018. V. 461. P. 76–81.
  18. Neo C.P., Yang Y., Ding J. Calculation of complex permeability of magnetic composite materials using ferromagnetic resonance model // J. Appl. Phys. 2010. V. 107. P. 083906.
  19. Shiryaev A., Rozanov K., Naboko A., Artemova A., Maklakov S., Bobrovskii S., Petrov D. Splitting of the magnetic loss peak of composites under external magnetic field // Physics. 2021. V. 3. No. 3. P. 678–688.
  20. Zhao H., Zhu Z., Xiong C., Xu X., Lin Q. The effect of transverse magnetic field treatment on wave-absorbing properties of FeNi alloy powders // J. Magn. Magn. Mater. 2017. V. 422. P. 402–406.
  21. Inoue M. Magnetophotonic crystals // Proc. MRS, Symposium J. “Magneto-Optical Materials for Photonics and Recording”. Boston. 2004. V. 853. J. 1.1.
  22. Butera A. Ferromagnetic resonance in arrays of highly anisotropic nanoparticles // Eur. Phys. J. B. 2006. V. 52. P. 297–303.
  23. Дровосеков А.Б., Крейнес Н.М., Ковалев О.А., Ситников А.В., Николаев С.Н., Рыльков В.В. Магнитный резонанс в металл-диэлектрических наногранулярных композитах с парамагнитными ионами в изолирующей матрице // ЖЭТФ. 2022. Т. 161. № 6. С. 853–865.
  24. Гуревич А.Г., Мелков Г.А. Магнитные колебания и волны. М.: Наука, 1994. 464 с.
  25. Каганов М.И. Селективная прозрачность ферромагнитных пленок // ФММ. 1959. Т. 7. № 2. С. 288–289.
  26. Гейнрих Б., Мещеряков В.Ф. Прохождение электромагнитной волны через ферромагнитный металл в области антирезонанса // Письма в ЖЭТФ. 1969. Т. 9. № 11. С. 618–622.
  27. Rudd J.M., Cochran J.F., Urquhart K.B., Myrtle K., Heinrich B. Ferromagnetic antiresonance transmission through pure Fe at 73GHz // J. Appl. Phys. 1988. V. 63. No. 8. P. 3811–3813.
  28. Tyagi S.D., Lofland S.E., Dominguez M., Bhagat S.M., Kwon C., Robson M.C., Ramesh R., Venkatesan T. Low-field microwave magnetoabsorption in manganites // Appl. Phys. Lett. 1996. V. 68. No. 20. P. 2893–2895.
  29. Fernández-García L., Suárez M., Menéndez J.L., Pecharromán C., Torrecillas R., Peretyagin P.Y., Petzelt J., Savinov M., Frait Z. Antiresonance in (Ni,Zn) ferrite-carbon nanofibres nanocomposites // Mater. Res. Express. 2015. V. 2. No. 5. P. 055003.
  30. Ustinov V.V., Rinkevich A.B., Perov D.V., Samoilovich M.I., Klescheva S.M. Anomalous magnetic antiresonance and resonance in ferrite nanoparticles embedded in opal matrix // J. Magn. Magn. Mater. 2012. V. 324. P. 78–82.
  31. Устинов В.В., Ринкевич А.Б., Перов Д.В., Бурханов А.М., Самойлович М.И., Клещева С.М., Кузнецов Е.А. Гигантский антирезонанс в отражении электромагнитных волн от 3D-структуры с наночастицами ферритов-шпинелей // ЖТФ. 2013. Т. 83. № 4. С. 104–112.
  32. Nemytova O.V., Rinkevich A.B., Perov D.V. Resonance variations of microwave reflection coefficient in nanocomposite sample with cobalt and palladium particles // J. Magn. Magn. Mater. 2021. V. 537. P. 168197.
  33. Ринкевич А.Б., Рябков Ю.И., Перов Д.В., Пахомов Я.А., Кузнецов Е.А. Прохождение микроволн через композитный материал с частицами из сплава Fe–Si–Nb–Cu–B // ФММ. 2021. Т. 122. № 4. С. 377–383.
  34. Perov D.V., Kuznetsov E.A., Rinkevich A.B., Nemytova O.V., Uimin M.A., Konev A.S. Electromagnetic waves attenuation in composite with Fe nanoparticles // J. Magn. Magn. Mater. 2023. V. 588. P. 171459.
  35. Perov D.V., Rinkevich A.B., Kuznetsov E.A., Nemytova O.V. Microwave field heterogeneity inside metamaterials with magnetic particles // Photonics Nanostructures: Fundam. Appl. 2018. V. 32. P. 62–67.
  36. Rinkevich A.B., Burkhanov A.M., Samoilovich M.I., Belyanin A.F., Kleshcheva S.M., Kuznetsov E.A. Three-dimensional nanocomposite metal dielectric materials on the basis of opal matrices // Russ. J. Gen. Chem. 2013. V. 83. P. 2148–2158.
  37. Pimenov A., Loidl A., Przyslupski P., Dabrowski B. Negative refraction in ferromagnet-superconductor superlattices // Phys. Rev. Lett. 2005. V. 95. No. 24. P. 247009.
  38. Ринкевич А.Б., Королев А.В., Самойлович М.И., Перов Д.В., Немытова О.В. Магнитные свойства и фазовый состав метаматериалов на основе опаловой матрицы с частицами 3d-переходных металлов // ФММ. 2018. Т. 119. № 2. С. 117–130.
  39. Kostylev M. Waveguide-based ferromagnetic resonance measurements of metallic ferromagnetic films in transmission and reflection // J. Appl. Phys. 2013. V. 113. 053908.
  40. Wang L., Zhou R., Xin H. Microwave (8–50 GHz) characterization of multiwalled carbon nanotube papers using rectangular waveguides // IEEE Trans. Microw. Theory Tech. 2008. V. 56. No. 2. P. 499–506.
  41. Perov D.V., Rinkevich A.B. Ferromagnetic resonance and antiresonance in composite medium with flakes of Finemet-like alloy // Nanomaterials. 2021. V. 11. P. 1748.
  42. Ávila-Crisóstomo C.E., Pal U., Pérez-Rodríguez F., Shelyapina M.G., Shmyreva A.A. Local-field effect on the hybrid ferromagnetic-diamagnetic response of opals with Ni nanoparticles // J. Magn. Magn. Mater. 2020. V. 514. P. 167102.
  43. Лебедев И.В. Техника и приборы СВЧ. Т. 1. М.: Высшая школа, 1970. 440 с.
  44. Chen L.F., Ong C.K., Neo C.P., Vardan V.V., Vardan V.K. Microwave electronics: Measurements and material characterization. Chichester: John Wiley & Sons Ltd., 2004. 537 p.
  45. Бреховских Л.М. Волны в слоистых средах. М.: Изд-во АН СССР, 1957. 504 с.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. SEM image of the structure obtained at 150,000 magnification (a) and EDAX spectrum (b) for a sample of nanocomposite with Co particles.

下载 (413KB)
3. Fig. 2. X-ray diffraction pattern of a nanocomposite sample based on an opal matrix with metallic Co particles in interspherical voids.

下载 (90KB)
4. Fig. 3. Magnetization curve of the composite measured at T = 2 K and hysteresis loops at T = 300 K and T = 2 K.

下载 (79KB)
5. Fig. 4. Scheme of microwave measurements. Shaded area – nanocomposite sample, H – external constant magnetic field, H~ – intensity of alternating microwave magnetic field, E~ – intensity of alternating microwave electric field, k – wave vector of electromagnetic wave.

下载 (108KB)
6. Fig. 5. Experimental (dashed lines and empty symbols) and theoretical (solid lines and filled symbols) dependences of relative changes in the transmission (a) and reflection (b) coefficients on the magnetic field for a sample based on an opal matrix with metallic Co particles in the interspherical voids.

下载 (232KB)
7. Fig. 6. Results of calculating the field dependence of the real (filled symbols) and imaginary (empty symbols) parts of the effective magnetic permeability (a); theoretical (solid lines and filled symbols) and experimental (dashed lines and empty symbols) field dependences of the dissipation parameter (b).

下载 (224KB)
8. Fig. 7. Dependences of real (filled symbols) and imaginary (empty symbols) parts of the wave number on the magnetic field.

下载 (113KB)
9. Fig. 8. Results of calculating the field dependence of the penetration depth of microwaves into the nanocomposite.

下载 (89KB)
10. Fig. 9. Field dependences of the ratio of sample thickness to wavelength in a composite for different frequencies.

下载 (90KB)