Precise Industrial Photogrammetry Methods Survey
- Авторлар: Gudym A.V1, Sokolov A.P1
-
Мекемелер:
- Московский государственный технический университет им. Н.Э. Баумана
- Шығарылым: № 12 (2025)
- Беттер: 3-41
- Бөлім: Surveys
- URL: https://rjsvd.com/0005-2310/article/view/697215
- DOI: https://doi.org/10.7868/S2413977725120013
- ID: 697215
Дәйексөз келтіру
Аннотация
Настоящий обзор посвящен новым и классическим методам, составляющим современный фотограмметрический конвейер, применяемый для эффективного высокоточного восстановления 3D-координат облаков точек и позиций объектов по фото- или видеосигналу. Уделяется особое внимание факторам, оказывающим влияние на измерительные погрешности выходной 3D-реконструкции. В зависимости от приложения реконструируемым 3D-точкам могут соответствовать различные признаки, такие как контрастные особенности текстуры объекта, рельефа или специальные метки, нанесенные на поверхность объекта. После выделения и сопоставления признаков следует решение задачи оптимизации пучка проекционных лучей (от англ. «bundle adjustment») для восстановления 3D-координат точек в пространстве. В обзоре освещены актуальные работы по данному направлению, приводятся удобные и практически значимые формулировки различных моделей камер, учитывающие дикторсию и используемые в рамках задачи оптимизации пучка. В экспериментальной части демонстрируется уровень точности, который может быть достигнут на практике с помощью рассмотренных методов для близко-ракурсных измерений. Показано, что повторяемость получаемых 3D-координат точек может превосходить уровень профессиональной фотограмметрии.
Авторлар туралы
A. Gudym
Московский государственный технический университет им. Н.Э. Баумана
Email: anton.v.gudym@yandex.ru
Москва, Россия
A. Sokolov
Московский государственный технический университет им. Н.Э. Баумана
Email: alsokolo@bmstu.ru
д-р техн. наук Москва, Россия
Әдебиет тізімі
- Финстеральдер С. Геометрические основы фотограмметрии (оригинал на немецком) // Ежегодник Немецкого математического общества. 1897. Т. 2. № 6. С. 1–41.
- Brown D. Decentering Distortion of Lenses // Photogrammetric Engineering. 1966. V. 32. No. 3. P. 444–462.
- Brown D. Close-Range Camera Calibration // Photogrammetric Engineering. 1971. V. 37. No. 8. P. 855–866.
- Fryer J., Brown D. Lens distortion for close-range photogrammetry // Photogrammetric Engineering and Remote Sensing. 1986. V. 52. P. 51–58.
- Drobyshev F.V. Soviet stereophotogrammetric instruments // Photogrammetria. 1960. V. 17. P. 60–68.
- Дубиновский В.Б., Буров Ю.Л., Бергер Н.Я., Портнова О.В. Строгий способ построения фотограмметрических сетей при обновлении топографических карт // Известия высших учебных заведений. Геодезия и аэрофотосъемка. 1990. № 6. С. 68–72.
- Алчинов А.И. Фирма «ТАЛКА-ТДВ» и цифровая фотограмметрическая станция «ТАЛКА» // Геопрофи. 2005. № 1. С. 10–11.
- Luhmann T. Close range photogrammetry for industrial applications // ISPRS Journal of Photogrammetry and Remote Sensing. 2010. V. 65. No. 6. P. 558–569.
- Bösemann W. Industrial Photogrammetry – Accepted Metrology Tool or Exotic Niche // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2016. V. XLI-B5. P. 15–24.
- Аумыско В.Г. Исследование точности фотограмметрии как метода определения объема объекта // Автоматика и программная инженерия. 2020. Т. 32. № 2. С. 69–74.
- Leizca I., Herrera I., Puerto P. Calibration Procedure of a Multi-Camera System: Process Uncertainty Budget // Sensors. 2023. V. 23. No. 2.
- Balanyi H.M., Turquí A.E., Tunc L.T. A novel vision-based calibration framework for industrial robotic manipulators // Robot. Comput.-Integr. Manuf. USA. 2022. V. 73. No. C. 15 p.
- Puerto P., Leizca I., Herrera I., et al. Analyses of Key Variables to Industrialize a Multi-Camera System to Guide Robotic Arms // Robotics. 2023. V. 12. P. 10–22.
- Li Z., Li S., Qin W., et al. A Robust Camera Self-calibration Method Based on Circular Oblique Images // ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2024. V. X-1-2024. P. 131–136.
- Ulrich M., Steger C., Butsch F., et al. Vision-guided robot calibration using photogrammetric methods // ISPRS Journal of Photogrammetry and Remote Sensing. 2024. V. 218. P. 645–662.
- Визильтер Ю.В., Топоркова О.С., Желтов С.Ю., Бучанова О.В. Сравнение изображений по форме с использованием диффузной морфологии и диффузной корреляции // Компьютерная оптика. 2015. Т. 39. № 2. С. 265–274.
- Fraser C.S. Automatic camera calibration in close-range photogrammetry // Photogrammetric Engineering and Remote Sensing. 2013. V. 79. P. 381–388.
- Lebedev M.A., Stepanianis D.G., Komarov D.V., et al. A real-time photogrammetric algorithm for sensor and synthetic image fusion with application to aviation combined vision // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2014. V. XL-3. P. 171–175.
- Knyaz V., Kniaz V., Zheltov S., et al. Multi-sensor Data Analysis for Aerial Image Semantic Segmentation and Vectorization // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2024. V. XLVIII-1-2024. P. 291–296.
- Kobzev A., Chibunichev A. Aerial Triangulation Using Different Time Images of Urban Areas Obtained from Unmanned Aerial Systems // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2024. V. XLVIII-2/W5-2024. P. 87–93.
- Schonberger J.L., Frahm J.-M. Structure-from-Motion Revisited // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. P. 4104-4113.
- Turki H., Ramanan D., Satyanarayanan M. Mega-NeRF: Scalable Construction of Large-Scale NeRFs for Virtual Fly-Throughs. 2022.
- Lowe D. Distinctive Image Features from Scale-Invariant Keypoints // Int. J. Comput. Vision. USA. 2004. V. 60. No. 2. P. 91-110.
- Bay H., Tuytelaars T., Van Gool L. SURF: Speeded Up Robust Features // Computer Vision - ECCV 2006. 2006. P. 404-417.
- DeTone D., Malisiewicz T., Rabinovich A. SuperPoint: Self-Supervised Interest Point Detection and Description // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2018. P. 337-348.
- Hartley R., Zisserman A. Multiple View Geometry in Computer Vision. 2 edition. New York, NY, USA: Cambridge University Press. 2003.
- Sola J., Deray J., Atchuthan D. A micro Lie theory for state estimation in robotics. 2021.
- Rieke-Zapp D., Tecklenburg W., Peipe J., et al. Evaluation of the geometric stability and the accuracy potential of digital cameras - Comparing mechanical stabilisation versus parameterisation // ISPRS Journal of Photogrammetry and Remote Sensing. 2009. V. 64. No. 3. P. 248-258.
- Tareen S.A.K., Saleem Z. A comparative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK // 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). 2018. P. 1-10.
- Jin Y., Mishkin D., Mishchuk A., et al. Image Matching Across Wide Baselines: From Paper to Practice // Int. J. Comput. Vision. USA. 2021. V. 129. No. 2. P. 517-547.
- Sun J., Shen Z., Wang Y., et al. LoFTR: Detector-Free Local Feature Matching with Transformers // CVPR. 2021. V. 1. P. 8918-8927.
- Lindenberger P., Sarlin P.-E., Pollefeys M. LightGlue: Local Feature Matching at Light Speed // 2023 IEEE/CVF International Conference on Computer Vision (ICCV). V. 1. 2023. P. 17581-17592.
- Vizilter Y., Zheltov S., Lebedev M. Image and shape comparison via morphological correlation // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2021. V. XLIV-2/W1-2021. P. 207-211.
- Sarlin P.-E., DeTone D., Malisiewicz T., et al. SuperGlue: Learning Feature Matching With Graph Neural Networks // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019. P. 4937-4946.
- Harris C.G., Stephens M.J. A Combined Corner and Edge Detector // Alvey Vision Conference. 1988.
- Shi J., Tomasi C. Good Features to Track // Proceedings / CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2000. V. 600.
- Rosten E., Drummond T. Machine Learning for High-Speed Corner Detection // Computer Vision – ECCV 2006. 2006. P. 430–443.
- Tyszkiewicz M.J., Fua P., Trulls E. DISK: Learning local features with policy gradient. 2020.
- Triggs B., McLachlan P.F., Hartley R.I., et al. Bundle Adjustment – A Modern Synthesis // Proceedings of the International Workshop on Vision Algorithms: Theory and Practice. ICCV'99. 1999. P. 298-372.
- Fitzgibbon A. Simultaneous linear estimation of multiple view geometry and lens distortion // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. V. 1. 2001. P. I–125.
- Zhang Z. A Flexible New Technique for Camera Calibration // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000. V. 22. P. 1330-1334.
- Wang J., Karace N., Rupprecht C., et al. VGGSfM: Visual Geometry Grounded Deep Structure From Motion // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024. P. 21686–21697.
- Gurdjos P., Sturm P., Wu Y. Euclidean Structure from N ≥ 2 Parallel Circles: Theory and Algorithms // Computer Vision – ECCV 2006. 2006. P. 238–252.
- Gemery D. Generalized Camera Calibration Including Fish-Eye Lenses // International Journal of Computer Vision. 2006. V. 68. P. 239-266.
- Schops T., Larsson V., Pollefeys M., et al. Why Having 10 000 Parameters in Your Camera Model Is Better Than Twelve // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020. P. 2532-2541.
- Canny J. A Computational Approach To Edge Detection // Pattern Analysis and Machine Intelligence, IEEE Transactions on. 1986. V. PAMI-8. P. 679-698.
- Shen Z., Zhao M., Jia X., et al. Combining convex hull and directed graph for fast and accurate ellipse detection // Graphical Models. 2021. V. 116. P. 101-110.
- Ouellet J.-N., Hebert P. Precise ellipse estimation without contour point extraction // Mach. Vis. Appl. 2009. V. 21. P. 59-67.
- Mortari D., Junkins J., Samaan M. Lost-in-Space Pyramid Algorithm for Robust Star Pattern Recognition // Spaceflight Mechanics 2005. 2001. V. 120. P. 10-20.
- Calonder M., Lepetit V., Strecha C., et al. BRIEF: Binary Robust Independent Elementary Features // Computer Vision – ECCV 2010. 2010. P. 778-792.
- Rublee E., Rabaud V., Konolige K., et al. ORB: An efficient alternative to SIFT or SURF // 2011 International Conference on Computer Vision. 2011. P. 2564-2571.
- Fernandez Alcantarilla P. Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces // British Machine Vision Conference (BMVC) at Bristol, UK. 2013.
- Schneider C.T., Simreich K. Optical 3-D Measurement Systems for Quality Control in Industry // XVIIIth ISPRS Congress Technical Commission V: Close-Range Photogrammetry and Machine Vision. 1992. V. 29. P. 56-59.
- dos Santos Cesar D. B., Gaudig C., Fritsche M., et al. An evaluation of artificial fiducial markers in underwater environments // OCEANS 2015 - Genova. 2015. P. 1-6.
- Calvet L., Gurdjos P., Griwodz C., et al. Detection and Accurate Localization of Circular Fiducials under Highly Challenging Conditions // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. P. 562-570.
- Tushev S., Sukhovilov B., Sartasov E. Robust Coded Target Recognition in Adverse Light Conditions // 2018 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). 2018. P. 1-6.
- Lin T.-Y., Dollar P., Girshick R., et al. Feature Pyramid Networks for Object Detection // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. P. 770-778.
- He K., Zhang X., Ren S., et al. Deep Residual Learning for Image Recognition // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. P. 770-778.
- Ronneberger O., Fischer P., Brox T. U-net: Convolutional networks for biomedical image segmentation // Medical image computing and computer-assisted intervention - MICCAI 2015. 2015. P. 234-241.
- Caetano T.S., Cheng L., Le Q.V., et al. Learning Graph Matching // 2007 IEEE 11th International Conference on Computer Vision. 2007. P. 1-8.
- Arandjelovic R., Zisserman A. Three things everyone should know to improve object retrieval // 2012 IEEE Conference on Computer Vision and Pattern Recognition. 2012. P. 2911-2918.
- Rusu R.B., Blodow N., Beetz M. Fast Point Feature Histograms (FPFH) for 3D registration // 2009 IEEE International Conference on Robotics and Automation. 2009. P. 3212-3217.
- Muja M., Lowe D. Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration // VISAPP 2009 - Proceedings of the Fourth International Conference on Computer Vision Theory and Applications. 2009. P. 331-340.
- Bishop C. Pattern Recognition and Machine Learning (Information Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.
- Lu Q., Josephson W., Wang Z., et al. Multi-probe LSH: efficient indexing for high-dimensional similarity search // Proceedings of the 33rd International Conference on Very Large Data Bases. 2007. P. 950-961.
- Nister D., Steuervius H. Scalable Recognition with a Vocabulary Tree // 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). V. 2. 2006. P. 2161-2168.
- Hartley R., Kang S.B. Parameter-Free Radial Distortion Correction with Centre of Distortion Estimation // Proceedings / IEEE International Conference on Computer Vision. 2005. V. 2. P. 1834-1841.
- Hartley R. In defense of the eight-point algorithm // IEEE Transactions on Pattern Analysis and Machine Intelligence. 1997. V. 19. No. 6. P. 580-593.
- Fischler M.A., Bolles R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography // Readings in Computer Vision. 1987. P. 726-740.
- Chum O., Matas J. Matching with PROSAC – progressive sample consensus // 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). V. 1. 2005. P. 220-226.
- Chum O., Werner T., Matas J. Two-view geometry estimation unaffected by a dominant plane // 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). V. 1. 2005. P. 772-779.
- Kaehler A., Bradski G. Learning OpenCV, 2nd Edition. O'Reilly Media, Inc. 2014.
- Chibunichev A., Govorov A., Chernyshev V. Research of the Camera Calibration Using Series of Images with Common Center of Projection // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2019. V. XLII-2/W18. P. 19-22.
- Grossberg M., Nagar S. A general imaging model and a method for finding its parameters // Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001. V. 2. 2001. P. 108-115.
- Tecklenburg W., Luhmann T., Hastedt H. Camera Modelling with Image-variant Parameters and Finite Elements // Optical 3D-Measurement Techniques V. 2001. P. 328-335.
- Hughes C., McFeely R., Denny P., et al. Equidistant (fθ) fish-eye perspective with application in distortion centre estimation // Image and Vision Computing. 2010. V. 28. No. 3. P. 538-551.
- Bukhari F., Dailey M.N. Automatic Radial Distortion Estimation from a Single Image // Journal of Mathematical Imaging and Vision. 2013. V. 45. No. 1. P. 31-45.
- Triggs B. Autocalibration from Planar Scenes // Proceedings of the 5th European Conference on Computer Vision. V. 1 of ECCV'98. 1998. P. 89-105.
- Nister D. An efficient solution to the five-point relative pose problem // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2004. V. 26. No. 6. P. 756-770.
- Larsson, Viktor and contributors. PoseLib – Minimal Solvers for Camera Pose Estimation. 2020.
- Agarwal S., Mierle K., The Ceres Solver Team. Ceres Solver. 2023.
- Bradbury J., Frostig R., Hawkins P., et al. JAX: composable transformations of Python+NumPy programs. 2018.
- Virtanen P., Gommers R., Oliphant T.E., et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python // Nature Methods. 2020. V. 17. P. 261-272.
- Blender Online Community. Blender – a 3D modelling and rendering package. Blender Foundation. Stichting Blender Foundation, Amsterdam. 2024.
Қосымша файлдар
