Precise Industrial Photogrammetry Methods Survey

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Настоящий обзор посвящен новым и классическим методам, составляющим современный фотограмметрический конвейер, применяемый для эффективного высокоточного восстановления 3D-координат облаков точек и позиций объектов по фото- или видеосигналу. Уделяется особое внимание факторам, оказывающим влияние на измерительные погрешности выходной 3D-реконструкции. В зависимости от приложения реконструируемым 3D-точкам могут соответствовать различные признаки, такие как контрастные особенности текстуры объекта, рельефа или специальные метки, нанесенные на поверхность объекта. После выделения и сопоставления признаков следует решение задачи оптимизации пучка проекционных лучей (от англ. «bundle adjustment») для восстановления 3D-координат точек в пространстве. В обзоре освещены актуальные работы по данному направлению, приводятся удобные и практически значимые формулировки различных моделей камер, учитывающие дикторсию и используемые в рамках задачи оптимизации пучка. В экспериментальной части демонстрируется уровень точности, который может быть достигнут на практике с помощью рассмотренных методов для близко-ракурсных измерений. Показано, что повторяемость получаемых 3D-координат точек может превосходить уровень профессиональной фотограмметрии.

Sobre autores

A. Gudym

Московский государственный технический университет им. Н.Э. Баумана

Email: anton.v.gudym@yandex.ru
Москва, Россия

A. Sokolov

Московский государственный технический университет им. Н.Э. Баумана

Email: alsokolo@bmstu.ru
д-р техн. наук Москва, Россия

Bibliografia

  1. Финстеральдер С. Геометрические основы фотограмметрии (оригинал на немецком) // Ежегодник Немецкого математического общества. 1897. Т. 2. № 6. С. 1–41.
  2. Brown D. Decentering Distortion of Lenses // Photogrammetric Engineering. 1966. V. 32. No. 3. P. 444–462.
  3. Brown D. Close-Range Camera Calibration // Photogrammetric Engineering. 1971. V. 37. No. 8. P. 855–866.
  4. Fryer J., Brown D. Lens distortion for close-range photogrammetry // Photogrammetric Engineering and Remote Sensing. 1986. V. 52. P. 51–58.
  5. Drobyshev F.V. Soviet stereophotogrammetric instruments // Photogrammetria. 1960. V. 17. P. 60–68.
  6. Дубиновский В.Б., Буров Ю.Л., Бергер Н.Я., Портнова О.В. Строгий способ построения фотограмметрических сетей при обновлении топографических карт // Известия высших учебных заведений. Геодезия и аэрофотосъемка. 1990. № 6. С. 68–72.
  7. Алчинов А.И. Фирма «ТАЛКА-ТДВ» и цифровая фотограмметрическая станция «ТАЛКА» // Геопрофи. 2005. № 1. С. 10–11.
  8. Luhmann T. Close range photogrammetry for industrial applications // ISPRS Journal of Photogrammetry and Remote Sensing. 2010. V. 65. No. 6. P. 558–569.
  9. Bösemann W. Industrial Photogrammetry – Accepted Metrology Tool or Exotic Niche // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2016. V. XLI-B5. P. 15–24.
  10. Аумыско В.Г. Исследование точности фотограмметрии как метода определения объема объекта // Автоматика и программная инженерия. 2020. Т. 32. № 2. С. 69–74.
  11. Leizca I., Herrera I., Puerto P. Calibration Procedure of a Multi-Camera System: Process Uncertainty Budget // Sensors. 2023. V. 23. No. 2.
  12. Balanyi H.M., Turquí A.E., Tunc L.T. A novel vision-based calibration framework for industrial robotic manipulators // Robot. Comput.-Integr. Manuf. USA. 2022. V. 73. No. C. 15 p.
  13. Puerto P., Leizca I., Herrera I., et al. Analyses of Key Variables to Industrialize a Multi-Camera System to Guide Robotic Arms // Robotics. 2023. V. 12. P. 10–22.
  14. Li Z., Li S., Qin W., et al. A Robust Camera Self-calibration Method Based on Circular Oblique Images // ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2024. V. X-1-2024. P. 131–136.
  15. Ulrich M., Steger C., Butsch F., et al. Vision-guided robot calibration using photogrammetric methods // ISPRS Journal of Photogrammetry and Remote Sensing. 2024. V. 218. P. 645–662.
  16. Визильтер Ю.В., Топоркова О.С., Желтов С.Ю., Бучанова О.В. Сравнение изображений по форме с использованием диффузной морфологии и диффузной корреляции // Компьютерная оптика. 2015. Т. 39. № 2. С. 265–274.
  17. Fraser C.S. Automatic camera calibration in close-range photogrammetry // Photogrammetric Engineering and Remote Sensing. 2013. V. 79. P. 381–388.
  18. Lebedev M.A., Stepanianis D.G., Komarov D.V., et al. A real-time photogrammetric algorithm for sensor and synthetic image fusion with application to aviation combined vision // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2014. V. XL-3. P. 171–175.
  19. Knyaz V., Kniaz V., Zheltov S., et al. Multi-sensor Data Analysis for Aerial Image Semantic Segmentation and Vectorization // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2024. V. XLVIII-1-2024. P. 291–296.
  20. Kobzev A., Chibunichev A. Aerial Triangulation Using Different Time Images of Urban Areas Obtained from Unmanned Aerial Systems // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2024. V. XLVIII-2/W5-2024. P. 87–93.
  21. Schonberger J.L., Frahm J.-M. Structure-from-Motion Revisited // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. P. 4104-4113.
  22. Turki H., Ramanan D., Satyanarayanan M. Mega-NeRF: Scalable Construction of Large-Scale NeRFs for Virtual Fly-Throughs. 2022.
  23. Lowe D. Distinctive Image Features from Scale-Invariant Keypoints // Int. J. Comput. Vision. USA. 2004. V. 60. No. 2. P. 91-110.
  24. Bay H., Tuytelaars T., Van Gool L. SURF: Speeded Up Robust Features // Computer Vision - ECCV 2006. 2006. P. 404-417.
  25. DeTone D., Malisiewicz T., Rabinovich A. SuperPoint: Self-Supervised Interest Point Detection and Description // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2018. P. 337-348.
  26. Hartley R., Zisserman A. Multiple View Geometry in Computer Vision. 2 edition. New York, NY, USA: Cambridge University Press. 2003.
  27. Sola J., Deray J., Atchuthan D. A micro Lie theory for state estimation in robotics. 2021.
  28. Rieke-Zapp D., Tecklenburg W., Peipe J., et al. Evaluation of the geometric stability and the accuracy potential of digital cameras - Comparing mechanical stabilisation versus parameterisation // ISPRS Journal of Photogrammetry and Remote Sensing. 2009. V. 64. No. 3. P. 248-258.
  29. Tareen S.A.K., Saleem Z. A comparative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK // 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). 2018. P. 1-10.
  30. Jin Y., Mishkin D., Mishchuk A., et al. Image Matching Across Wide Baselines: From Paper to Practice // Int. J. Comput. Vision. USA. 2021. V. 129. No. 2. P. 517-547.
  31. Sun J., Shen Z., Wang Y., et al. LoFTR: Detector-Free Local Feature Matching with Transformers // CVPR. 2021. V. 1. P. 8918-8927.
  32. Lindenberger P., Sarlin P.-E., Pollefeys M. LightGlue: Local Feature Matching at Light Speed // 2023 IEEE/CVF International Conference on Computer Vision (ICCV). V. 1. 2023. P. 17581-17592.
  33. Vizilter Y., Zheltov S., Lebedev M. Image and shape comparison via morphological correlation // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2021. V. XLIV-2/W1-2021. P. 207-211.
  34. Sarlin P.-E., DeTone D., Malisiewicz T., et al. SuperGlue: Learning Feature Matching With Graph Neural Networks // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019. P. 4937-4946.
  35. Harris C.G., Stephens M.J. A Combined Corner and Edge Detector // Alvey Vision Conference. 1988.
  36. Shi J., Tomasi C. Good Features to Track // Proceedings / CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2000. V. 600.
  37. Rosten E., Drummond T. Machine Learning for High-Speed Corner Detection // Computer Vision – ECCV 2006. 2006. P. 430–443.
  38. Tyszkiewicz M.J., Fua P., Trulls E. DISK: Learning local features with policy gradient. 2020.
  39. Triggs B., McLachlan P.F., Hartley R.I., et al. Bundle Adjustment – A Modern Synthesis // Proceedings of the International Workshop on Vision Algorithms: Theory and Practice. ICCV'99. 1999. P. 298-372.
  40. Fitzgibbon A. Simultaneous linear estimation of multiple view geometry and lens distortion // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. V. 1. 2001. P. I–125.
  41. Zhang Z. A Flexible New Technique for Camera Calibration // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000. V. 22. P. 1330-1334.
  42. Wang J., Karace N., Rupprecht C., et al. VGGSfM: Visual Geometry Grounded Deep Structure From Motion // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024. P. 21686–21697.
  43. Gurdjos P., Sturm P., Wu Y. Euclidean Structure from N ≥ 2 Parallel Circles: Theory and Algorithms // Computer Vision – ECCV 2006. 2006. P. 238–252.
  44. Gemery D. Generalized Camera Calibration Including Fish-Eye Lenses // International Journal of Computer Vision. 2006. V. 68. P. 239-266.
  45. Schops T., Larsson V., Pollefeys M., et al. Why Having 10 000 Parameters in Your Camera Model Is Better Than Twelve // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020. P. 2532-2541.
  46. Canny J. A Computational Approach To Edge Detection // Pattern Analysis and Machine Intelligence, IEEE Transactions on. 1986. V. PAMI-8. P. 679-698.
  47. Shen Z., Zhao M., Jia X., et al. Combining convex hull and directed graph for fast and accurate ellipse detection // Graphical Models. 2021. V. 116. P. 101-110.
  48. Ouellet J.-N., Hebert P. Precise ellipse estimation without contour point extraction // Mach. Vis. Appl. 2009. V. 21. P. 59-67.
  49. Mortari D., Junkins J., Samaan M. Lost-in-Space Pyramid Algorithm for Robust Star Pattern Recognition // Spaceflight Mechanics 2005. 2001. V. 120. P. 10-20.
  50. Calonder M., Lepetit V., Strecha C., et al. BRIEF: Binary Robust Independent Elementary Features // Computer Vision – ECCV 2010. 2010. P. 778-792.
  51. Rublee E., Rabaud V., Konolige K., et al. ORB: An efficient alternative to SIFT or SURF // 2011 International Conference on Computer Vision. 2011. P. 2564-2571.
  52. Fernandez Alcantarilla P. Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces // British Machine Vision Conference (BMVC) at Bristol, UK. 2013.
  53. Schneider C.T., Simreich K. Optical 3-D Measurement Systems for Quality Control in Industry // XVIIIth ISPRS Congress Technical Commission V: Close-Range Photogrammetry and Machine Vision. 1992. V. 29. P. 56-59.
  54. dos Santos Cesar D. B., Gaudig C., Fritsche M., et al. An evaluation of artificial fiducial markers in underwater environments // OCEANS 2015 - Genova. 2015. P. 1-6.
  55. Calvet L., Gurdjos P., Griwodz C., et al. Detection and Accurate Localization of Circular Fiducials under Highly Challenging Conditions // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. P. 562-570.
  56. Tushev S., Sukhovilov B., Sartasov E. Robust Coded Target Recognition in Adverse Light Conditions // 2018 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). 2018. P. 1-6.
  57. Lin T.-Y., Dollar P., Girshick R., et al. Feature Pyramid Networks for Object Detection // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. P. 770-778.
  58. He K., Zhang X., Ren S., et al. Deep Residual Learning for Image Recognition // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. P. 770-778.
  59. Ronneberger O., Fischer P., Brox T. U-net: Convolutional networks for biomedical image segmentation // Medical image computing and computer-assisted intervention - MICCAI 2015. 2015. P. 234-241.
  60. Caetano T.S., Cheng L., Le Q.V., et al. Learning Graph Matching // 2007 IEEE 11th International Conference on Computer Vision. 2007. P. 1-8.
  61. Arandjelovic R., Zisserman A. Three things everyone should know to improve object retrieval // 2012 IEEE Conference on Computer Vision and Pattern Recognition. 2012. P. 2911-2918.
  62. Rusu R.B., Blodow N., Beetz M. Fast Point Feature Histograms (FPFH) for 3D registration // 2009 IEEE International Conference on Robotics and Automation. 2009. P. 3212-3217.
  63. Muja M., Lowe D. Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration // VISAPP 2009 - Proceedings of the Fourth International Conference on Computer Vision Theory and Applications. 2009. P. 331-340.
  64. Bishop C. Pattern Recognition and Machine Learning (Information Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.
  65. Lu Q., Josephson W., Wang Z., et al. Multi-probe LSH: efficient indexing for high-dimensional similarity search // Proceedings of the 33rd International Conference on Very Large Data Bases. 2007. P. 950-961.
  66. Nister D., Steuervius H. Scalable Recognition with a Vocabulary Tree // 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). V. 2. 2006. P. 2161-2168.
  67. Hartley R., Kang S.B. Parameter-Free Radial Distortion Correction with Centre of Distortion Estimation // Proceedings / IEEE International Conference on Computer Vision. 2005. V. 2. P. 1834-1841.
  68. Hartley R. In defense of the eight-point algorithm // IEEE Transactions on Pattern Analysis and Machine Intelligence. 1997. V. 19. No. 6. P. 580-593.
  69. Fischler M.A., Bolles R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography // Readings in Computer Vision. 1987. P. 726-740.
  70. Chum O., Matas J. Matching with PROSAC – progressive sample consensus // 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). V. 1. 2005. P. 220-226.
  71. Chum O., Werner T., Matas J. Two-view geometry estimation unaffected by a dominant plane // 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). V. 1. 2005. P. 772-779.
  72. Kaehler A., Bradski G. Learning OpenCV, 2nd Edition. O'Reilly Media, Inc. 2014.
  73. Chibunichev A., Govorov A., Chernyshev V. Research of the Camera Calibration Using Series of Images with Common Center of Projection // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2019. V. XLII-2/W18. P. 19-22.
  74. Grossberg M., Nagar S. A general imaging model and a method for finding its parameters // Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001. V. 2. 2001. P. 108-115.
  75. Tecklenburg W., Luhmann T., Hastedt H. Camera Modelling with Image-variant Parameters and Finite Elements // Optical 3D-Measurement Techniques V. 2001. P. 328-335.
  76. Hughes C., McFeely R., Denny P., et al. Equidistant (fθ) fish-eye perspective with application in distortion centre estimation // Image and Vision Computing. 2010. V. 28. No. 3. P. 538-551.
  77. Bukhari F., Dailey M.N. Automatic Radial Distortion Estimation from a Single Image // Journal of Mathematical Imaging and Vision. 2013. V. 45. No. 1. P. 31-45.
  78. Triggs B. Autocalibration from Planar Scenes // Proceedings of the 5th European Conference on Computer Vision. V. 1 of ECCV'98. 1998. P. 89-105.
  79. Nister D. An efficient solution to the five-point relative pose problem // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2004. V. 26. No. 6. P. 756-770.
  80. Larsson, Viktor and contributors. PoseLib – Minimal Solvers for Camera Pose Estimation. 2020.
  81. Agarwal S., Mierle K., The Ceres Solver Team. Ceres Solver. 2023.
  82. Bradbury J., Frostig R., Hawkins P., et al. JAX: composable transformations of Python+NumPy programs. 2018.
  83. Virtanen P., Gommers R., Oliphant T.E., et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python // Nature Methods. 2020. V. 17. P. 261-272.
  84. Blender Online Community. Blender – a 3D modelling and rendering package. Blender Foundation. Stichting Blender Foundation, Amsterdam. 2024.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025