Hybrid method of image analysis based on artificial intelligence technologies and fuzzy sets

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The paper deals with the development of a prototype of a hybrid intelligent system for image analysis on the example of the task of diagnosis and staging of diabetic retinopathy – a complication of diabetes mellitus, characterized by damage to the retinal vessels. As a result of chronically elevated blood glucose levels, microcirculation is impaired, leading to the development of microaneurysms, exudation, hemorrhage and, in severe cases, neovascularization. This can lead to visual impairment and, ultimately, to blindness in the absence of timely treatment. Detection and staging of the disease are based on the analysis of photographic images of the ocular fundus (fundus images). An overview of the research topic is given, the basis for the advantages of hybrid intelligent systems in comparison with solutions based on the application of a single technology is presented. The steps of creating a system that combines the joint use of classical methods of computer vision, artificial neural networks, elements of fuzzy logic theory and methods of explainable artificial intelligence are described. With the help of combined architecture of the software solution it was possible to achieve flexibility in the issues of applicability of criteria of disease staging, which indicates the broad prospects of such a solution in the diagnosis of other diseases with logically formalizable criteria.

Texto integral

Acesso é fechado

Sobre autores

A. Averkin

Plekhanov Russian University of Economics

Autor responsável pela correspondência
Email: averkin2003@inbox.ru
Rússia, Moscow

E. Volkov

Plekhanov Russian University of Economics

Email: averkin2003@inbox.ru
Rússia, Moscow

S. Yarushev

Plekhanov Russian University of Economics

Email: averkin2003@inbox.ru
Rússia, Moscow

Bibliografia

  1. Volkov E.N., Averkin A.N. Explainable Artificial Intelligence in Medical Image Analysis: State of the Art and Prospects // XXVI Intern. Conf. on Soft Computing and Measurements (SCM). IEEE, 2023. P. 134–137. https://doi.org/10.1109/SCM58628.2023.10159033
  2. Averkin A.N., Volkov E.N., Yarushev S.A. Possibilities of application of neuro-fuzzy networks for ophthalmologic image classification // Pattern Recognition Image Analysis. 2024. V. 34. № 3. P. 610–616. https://doi.org/10.1134/S1054661824700421
  3. Averkin A.N., Volkov E.N., Yarushev S.A. Explainable artificial intelligence in deep learning neural nets-based digital images analysis //J. Comp. Systems Sci. Int. 2024. V. 63. № 1. P. 175–203. https://doi.org/10.1134/S1064230724700138
  4. Рыжов А.П. О качестве классификации объектов на основе нечетких правил // Интеллектуальные системы. 2005. Т. 9. С. 253–264.
  5. Krzywicki T., Brona P., Zbrzezny A.B. et al. A global review of publicly available datasets containing fundus images: characteristics, barriers to access, usability, and generalizability //J. Clin. Med. 2023. V. 12. № 10. P. 3587. https://doi.org/10.3390/jcm12103587
  6. Jha D., Smedsrud P.H., Riegler M.A. et al. Resunet++: an advanced architecture for medical image segmentation // IEEE Intern. Sympos. Multimedia (ISM). 2019. P. 225–2255.
  7. Van der Velden B.H.M., Kuijf B.H., Gilhuijs H.J. et al. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis // Med. Image Analysis. 2022. V. 79. P. 102470. https://doi.org/10.1016/j.media.2022.102470
  8. Qian J., Li H., Wang J. et al. Recent advances in explainable artificial intelligence for magnetic resonance imaging // Diagnostics. 2023. V. 13. № 9. P. 1571. https://doi.org/10.3390/diagnostics13091571
  9. Volkov E.N., Averkin A.N. Possibilities of explainable artificial intelligence for glaucoma detection using the LIME method as an example // XXVI Intern. Conf. on Soft Computing and Measurements (SCM). IEEE: Saint-Petersburg, 2023. P. 130–133. https://doi.org/10.1109/SCM58628.2023.10159038
  10. Saeed W., Omlin C. Explainable Ai (Xai): a systematic meta-survey of current challenges and future opportunities // Knowledge-Based Systems. 2023. V. 263. P. 110273. https://doi.org/10.1016/j.knosys.2023.110273
  11. Clement T., Kemmerzell N., Abdelaal M. et al. XAIR: a systematic metareview of explainable AI (XAI) aligned to the software development process // Mach. Lear. Knowledge Extraction. 2023. V. 5. № 1. P. 78–108. https://doi.org/10.3390/make5010006
  12. Selvaraju R.R., Cogswell M., Das A. et al. Grad-cam: visual explanations from deep networks via gradient-based localization // Proc. IEEE Intern. Conf. on Computer Vision. Venice, 2017. P. 618–626.
  13. Zhou B., Khosla A., Lapedriza A. et al. Learning deep features for discriminative localization // Proc. IEEE Conf. on Computer Vision and Pattern Recognition. Las Vegas, 2016. P. 2921–2929.
  14. Cheng B., Girshick R., Dollar P. et al. Boundary IoU: improving object-centric image segmentation evaluation // Proc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Nashville, USA. 2021. P. 15334–15342.
  15. Zhao R., Qian B., Zhang X. et al. Rethinking dice loss for medical image segmentation // IEEE Intern. Conf. on Data Mining (ICDM). Sorrento, Italy. IEEE, 2020. P. 851–860. https://doi.org/10.1109/ICDM50108.2020.00094
  16. Hehn T., Kooij J., Gavrila D. Fast and compact image segmentation using instance stixels // IEEE Transactions on Intelligent Vehicles. 2021. V. 7. № 1. P. 45–56. https://doi.org/10.1109/TIV.2021.3067223

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Signs of diabetic retinopathy on the fundus image.

Baixar (241KB)
3. Fig. 2. Structure of the hybrid intelligent system for diagnosing diabetic retinopathy.

Baixar (387KB)
4. Fig. 3. Fundus images in RGB color channels (own data).

Baixar (95KB)
5. Fig. 4. Results of applying the CLAHE filter (own data).

Baixar (101KB)
6. Fig. 5. Examples of images of the APTOS2019 dataset.

Baixar (103KB)
7. Fig. 6. Examples of images of datasets for segmentation: the first row is FDGAR, the second row is IDRID, columns are class masks.

Baixar (168KB)
8. Fig. 7. EfficentNetB0 architecture.

Baixar (245KB)
9. Fig. 8. CenterNet architecture.

Baixar (202KB)
10. Fig. 9. ResUNet++ architecture [3].

Baixar (673KB)
11. Fig. 10. Diagnostic decision surface for the stage of diabetic retinopathy – DDS (own data).

Baixar (253KB)
12. Fig. 11. Segmentation results using ResUnet++ (own data).

Baixar (114KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025